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M. R. Dougherty, A. M. Franco-Watkins, and R. Thomas (2008) conjectured that fast and frugal
heuristics need an automatic frequency counter for ordering cues. In fact, only a few heuristics order cues,
and these orderings can arise from evolutionary, social, or individual learning, none of which requires
automatic frequency counting. The idea that cue validities cannot be computed because memory does not
encode missing information is misinformed; it implies that measures of co-occurrence are incomputable
and would invalidate most theories of cue learning. They also questioned the recognition heuristic’s
psychological plausibility on the basis of their belief that it has not been implemented in a memory
model, although it actually has been implemented in ACT-R (L. J. Schooler & R. Hertwig, 2005). On the
positive side, M. R. Dougherty et al. discovered a new mechanism for a less-is-more effect. The authors
of the present article specify minimal criteria for psychological plausibility, describe some genuine
challenges in the study of heuristics, and conclude that fast and frugal heuristics are psychologically
plausible: They use limited search and are tractable and robust.
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The program of fast and frugal heuristics centers on three
questions. The first concerns the adaptive toolbox: What heu-
ristics do organisms use? Answering this involves identifying
heuristics, their building blocks, and the evolved capacities that
these exploit. The second concerns ecological rationality: What
are the environmental structures in which a given heuristic
works well or poorly, and how do people adapt heuristics to
these structures? The third question concerns applications: How
can the study of ecological rationality inform the design of
heuristics and environments to improve decision making? For
example, ecologically rational design has been used to improve
coronary care unit allocations (Green & Mehr, 1997), first-line
antibiotic prescription in children (Fischer et al., 2002), and risk

communication in medicine and law (Gigerenzer, 2002; Giger-
enzer & Edwards, 2003; Hoffrage, Lindsey, Hertwig, & Giger-
enzer, 2000). The results have been summarized in four books
(Gigerenzer, 2007; Gigerenzer & Engel, 2006; Gigerenzer &
Selten, 2001; Gigerenzer, Todd, & the ABC Research Group,
1999).

Dougherty, Franco-Watkins, and Thomas (2008) commented
on our initial work, the 1991 and 1996 Psychological Review
articles (Gigerenzer & Goldstein, 1996; Gigerenzer, Hoffrage,
& Kleinbölting, 1991), but apart from the 2002 Psychological
Review article on the recognition heuristic (Goldstein & Gig-
erenzer, 2002), they did not deal with our subsequent research.
Their critique concerns the search rule of Take The Best
(TTB)––its stopping rule and decision rule are not discussed––
and the recognition heuristic, but they inappropriately general-
ized to all fast and frugal heuristics. To the extent that other
heuristics are mentioned at all, the authors passed over or
dismissed them.1 Although Dougherty et al. acknowledged the
concept of an adaptive toolbox, they also presented our program

1 For instance, Dougherty et al. (2008) wrote that the Minimalist heu-
ristic, which does not order cues by validity but searches in random order,
is “particularly problematic, in the sense that randomness cannot be em-
pirically validated” (p. xx). This is a surprising statement. One certainly
can test randomness as well as models of cognition that make explicit
assumptions about stochastic generation of cues or instances (e.g., Bergert
& Nosofsky, 2007; Tversky’s 1972 elimination by aspects [EBA]).
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as if it were about one heuristic only (as it was in 1991). They
argued that Bröder (2000) and Newell “have shown that it
[TTB] is far from a universal heuristic” (Dougherty et al., 2008,
p. 209). Bröder (2000) indeed initially invoked the question of
whether TTB is a “universal” heuristic used by everyone in
every situation. However, he soon began to ask in which
situations people rely on which heuristic (Bröder, 2003; Bröder
& Schiffer, 2003). In contrast, Dougherty et al. still promoted
the concept of an all-purpose heuristic and did not investigate
each heuristic’s ecological rationality. We now remedy some
misunderstandings (see Table 1).

Fast and Frugal Heuristics Do Not Need an Automatic
Frequency Counter

Dougherty et al.’s (2008) first conjecture is that “PMM and
the fast and frugal algorithms assume that cue validities are
based on a frequency-counter process, such as that proposed by
Hasher and Zacks (1979)” (p. 200). They then declared Hasher
and Zacks’s (1979) frequency counter––and, by association, all
the fast and frugal heuristics––to be “implausible.” This con-
clusion, in particular its generalization to all heuristics, is
astonishing. Only one of the five models of heuristics in Gig-
erenzer and Goldstein’s (1996) article orders cues by validities
(TTB); the others rely on equal weights, recency, or random
search. Moreover, heuristics, such as satisficing, tit for tat, and
imitate the successful, do not rely on cue order but on principles
such as aspiration levels, reciprocity, and behavior copying.
What about TTB, however? Does it need an automatic fre-

quency counter to order cues? The answer is no. In Gigerenzer
et al.’s (1991) article, we explicitly remained open as to how
frequency encoding is carried out, which Dougherty et al. cited
but nevertheless disregarded in asserting that an automatic
frequency encoding “is necessary (though not sufficient) for the
functioning of. . .the TTB algorithm” (p. 201). This view is
incorrect. In Gigerenzer et al.’s (1991) article, we acknowl-
edged that “memory is often (but not always) excellent in
storing frequency information” (p. 510). No perfect automatic
frequency encoding is assumed.2 In Gigerenzer and Goldstein’s
(1996) article, we made it clear that the “Take The Best algo-

2 The assumption of automatic frequency counting is also not part of the
Brunswikian psychology on which probabilistic mental model theory is based.
Following Helmholtz, Brunswik emphasized the role of frequency learning––
against the Gestalt theorists’ emphasis on innate perceptual structures. How-
ever, for Brunswik, the question of to what extent frequency judgments are
accurate or depend on other variables was an empirical one, not an a priori
assumption. In his multidimensional psychophysics, Brunswik (1937) argued
against the one-dimensional psychophysics from Fechner to Stevens, which
treated perceived frequency, loudness, or area as independent from context
variables. Brunswik was probably the first to study how estimates of the
number of coins depend on their size and value and vice versa. In his words,
judgments are perceptual compromises, not accurate and automatic counts of
frequencies independent of context. Similarly, probabilistic mental model
theory emphasizes that the accuracy of frequency judgments depends on the
reference class activated (Gigerenzer et al., 1991) and on the size of the
reference class (Hoffrage & Hertwig, 2006). Thus, there is no automatic
frequency counter in the Brunswikian framework either.

Table 1
Some Misconceptions, Insights, and Research Questions

Misconception Clarification

Cue validity is the same as ecological validity. Ecological validities are properties of the environment, whereas cue validities are
properties of a probabilistic mental model.

Take The Best needs to compute precise ecological
validities to order cues.

Take The Best only requires ordering cues, not computing quantitative validities.
Depending on how cue orders are learned, there will be individual differences that
depart from the ecological validity order. If the distribution of ecological cue validities
is flat, then different individual orders have little effect on accuracy; the more it is
skewed, the larger the effect but the smaller the likelihood of large individual
differences (see Martignon & Hoffrage, 2002).

A memory representation cannot register the absence
of information, that is, negative cue values, and
therefore cue validity cannot be computed.

Absence of information is not the same as a negative cue value. Negative cue values
indicate lower criterion values and do not necessarily correspond to the absence of a
cue. Negative cue values, like positive ones, are either encoded or, if they have not
been encoded, then they are inferred or not known (i.e., a missing value in a
probabilistic mental model, not a negative value). Cue validity can be computed
independently of whether negative cue values have been encoded.

Insight

1. Forgetting enables the recognition heuristic and the fluency heuristic to make better inferences (Schooler & Hertwig, 2005).
2. Less information, time, and computation can improve cognitive and motor performance in a number of situations (Gigerenzer, 2007; Hertwig &

Todd, 2003).
3. Ordering cues in a simple, unconditional way can improve judgments as compared with rational conditional ordering or weighing of cues (Brighton,

2006; Czerlinski, Gigerenzer, & Goldstein, 1999). Thus, the cognitive inability to monitor dependencies between cues can actually enhance the
accuracy of inference.

Research question

1. How do people select between heuristics?
2. How do evolved capacities, including cognitive limitations, support the efficiency of heuristics?
3. What are the relevant structures of physical and social environments that specific heuristics can exploit?
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rithm assumes a subjective rank order of cues” (p. 653), that is,
an ordering by subjective, not ecological, validities (see Table
1). Furthermore, TTB only needs to order cues, not to compute
quantitative values for cue validities (see Table 1). There are
three ways cues can be ordered.

Evolutionary Learning

As exemplified by the classic work of Tinbergen (1958), animal
biologists have studied rules of thumb (what psychologists call “heu-
ristics”). Natural selection can produce good cue orders. For instance,
female sage grouses first screen males on the basis of their songs and
then visit only those who pass this test for a closer visual inspection
of display rate (Gibson, 1996). Such a sequential use of cues seems to
be extremely widespread in sexual selection as well as in animal
navigation and food choice (for an overview, see Hutchinson &
Gigerenzer, 2005). Similarly, evolutionary psychologists have argued
that partner choice in humans involves gender-specific cues that
evolved through sexual and natural selection, modified by social and
individual learning. Without the benefit of evolutionary learning, the
mind would be a “blank slate” (Pinker, 2002).

Social Learning

Cultural evolution is guided by three transmission factors:
teaching, imitation, and language (Boyd & Richerson, 2001,
2005). Each of these factors also enables learning of cue orders.
For instance, medical students and physicians are taught which
diagnostic cues to check in which order, such as when a patient is
suspected of acute ischemic heart disease. Learning cue orders by
encoding co-occurrence frequencies can be a slow and dangerous
process in medicine and beyond. In humans, social learning is
probably the most widespread method of learning the identity and
order of cues. Examples range from employers learning what to
look for in potential employees to mountaineers learning how to
predict avalanches (McCammon & Hägeli, 2007). Similarly, psy-
chologists often use social learning when testing models of cog-
nitive heuristics, for instance, when instructing participants about
cue orders and other properties of the task (e.g., Rieskamp &
Hoffrage, in press; Rieskamp & Otto, 2006).

Individual Learning

Learning by individual experience is a third way to order cues
and is the only one Dougherty et al. (2008) considered. It is slow
compared with social learning and evolutionary learning (from the
perspective of the individual, not evolution). Apart from that, it can
be too dangerous (think of learning by feedback about which
mushrooms are poisonous) or practically impossible when the
events are rare or feedback absent or unreliable. Experiments
indicate that with a sufficient number of learning trials, partici-
pants can reliably learn to order cues by validity or success,
without the aid of social learning (Garcia-Retamero, Hoffrage, &
Dieckmann, 2007; Newell, Rakow, Weston, & Shanks, 2004;
Rakow, Hinvest, Jackson, & Palmer, 2004; Rakow, Newell, Fay-
ers, & Hersby, 2005).

To summarize, (a) most heuristics do not involve ordering cues
by validity, (b) TTB can rely on three ways for ordering cues, and
(c) even individual learning does not postulate perfection or inde-

pendence from attention. No automatic frequency counter is nec-
essary for establishing the cue order in a probabilistic mental
model, TTB, and fast and frugal heuristics in general.

Minds Can Infer Negative Cue Values

Dougherty et al.’s (2008) second conjecture is that the definition
of cue validities “requires complementary knowledge of events
that are present and events that are absent from the environment”
(p. 202), and they “see no way that a memory representation can
register the absence of information” (p. 203). From this they
concluded that cue validity cannot be computed and that its defi-
nition is “fundamentally flawed.” We, in turn, conclude that their
conclusion is fundamentally misinformed.

First, binary cue values (� and �) do not necessarily stand for
presence and absence of a cue. Being female, for instance, is not
the absence of being male. In contrast, Dougherty et al. (2008)
stated that “. . .cue values with minus signs correspond to the
absence of the cue” (p. 202; also see their Figure 2). Yet one can
easily register whether a person is male or female, or young or old.
All the information necessary for computing validity is in memory.
However, let us focus on the subset of cues that can be character-
ized by presence and absence.

One example they give is that while reading their article, a
person will not encode that the words “xylophone” and “pepper”
are not present in one of the sentences. However, Dougherty et al.
(2008) confused what we encode with what we can know by
inference, either implicitly or explicitly. Although memory might
have encoded the fact that Dallas has an NFL football team,
according to Dougherty et al., it is impossible to know that Ho-
nolulu does not. However, many people do. Doctors who test
hypotheses about the condition of a patient may check for the
presence of fever and, as a consequence, know if it is absent. There
are even cases in which people pay specific attention to the
absence of a cue, such as whether a friend avoids eye contact, a
child forgets to say “thank you,” and a colleague does not cite
them. Cognition and memory involve more than encoding and
retrieving facts; they also infer cue values and even update missing
cue values (which is the essence of our hindsight bias model;
Hoffrage, Hertwig, & Gigerenzer, 2000). There are further treat-
ments of how people gain knowledge without having experienced
it (e.g., Landauer & Dumais, 1997).

What, then, about the “xylophone” and “pepper” case? The
point is that in the context of Dougherty et al.’s (2008) article,
neither pepper nor xylophones play a role. If they had instead
written a recipe for chili, one would have registered the absence of
pepper, although still not that of xylophones. The same holds for
cue-based inferences, where the absence of highly associated in-
formation would be registered. The absence of irrelevant informa-
tion is not the same as a negative value of a relevant cue.

If Dougherty et al.’s (2008) conclusion were true, then it would
imply that most cognitive theories based on validity or other
measures of co-occurrence are psychologically implausible. To
begin with, the definition of cue validity is identical, up to a linear
transformation, to the Goodman–Kruskal rank correlation, which
is close to Spearman’s rho (Gigerenzer, 1981). Next, if the dis-
crimination rates of binary cues are the same, then ordering cues
by validity yields the same ordering as success (Martignon &
Hoffrage, 1999). The ranking of cues by success is identical to that
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by the Bayesian expected change in belief (Klayman & Ha, 1987),
also known as the expected information gain (Oaksford & Chater,
1998), and to Shannon’s information measure (see Rakow et al.,
2004). In addition, the Pearson correlation between a cue and the
criterion (Alternative A is greater vs. B is greater) can also be
expressed as a function of validity (Rakow et al., 2005). This list
can be continued. Thus, if cue validity could not be computed
(because memory representations cannot register missing informa-
tion), then no other theory that postulates ordering or weighing
cues by success, rank correlations, Pearson correlations, Bayesian
expected information gain, or similar weighting functions would
be psychologically plausible. That would invalidate many cogni-
tive theories and pose the question of how humans and other
animals are able to learn correlations in the wild (say, between
disease and symptom or cause and effect) where no-symptom and
no-effect cases represent the absence of information.

To summarize, Dougherty et al. (2008) overlooked that binary
cues do not generally imply absence or presence and that positive
and negative cue values can be known by inference even without
previous encoding. In contrast to their claim, cues can be ordered
according to validity or success. The empirical evidence shows the
same picture.

Inference From Memory

If TTB’s memory requirements were implausible, as Dougherty
et al. (2008) suggested, then there should be no evidence for this
heuristic when people make inferences from memory, only when
they make inferences from givens, that is, when cue values are
displayed externally, as on a computer screen. Bröder and Schiffer
(2003) tested and rejected this conjecture. When participants had
to retrieve cue values from memory, a Bayesian model selection
criterion classified 64% of 50 participants as using TTB, whereas
two competing linear models accounted for only 12% of the
participants each. Similarly, when Bröder and Schiffer (2003)
directly compared inferences from memory with inferences from
givens, the proportion of participants classified as using TTB was
twice as large for inferences from memory. Hoffrage, Hertwig, and
Gigerenzer (2000) implemented TTB in a model of hindsight bias
and successfully tested its predictions in a task in which partici-
pants had acquired cue values in several preceding learning trials.
Furthermore, Bröder and Gaissmaier (in press) analyzed response
times from five experiments and reported that for participants
classified as using TTB, response times increased monotonically
with the number of cues that had to be retrieved from memory, as
this heuristic would predict. With inferences from givens, Bergert
and Nosofsky (2007) tested the reaction time predictions of TTB
against those of a weighted additive model and concluded that the
vast majority of participants were consistent with the heuristic’s
process predictions. In sum, when people had previously encoded
positive and negative cue values in memory, their inferences were
more often consistent with TTB as compared with external dis-
plays of cue values.

Some Genuine Challenges in the Investigation
of Cue Orderings

Learning cue orders appears irrelevant if one assumes that all
cues or features contribute equally to a decision, as in Dougherty,

Gettys, and Ogden’s (1999) Minerva-DM model. However, the
assumption that cues are always equally weighted is unrealistic. In
contrast, we assume that the adaptive toolbox contains both heu-
ristics that order cues and heuristics that treat them equally, allow-
ing organisms to select heuristics according to the problem at hand.
For instance, Martignon and Hoffrage (1999) and Hogarth and
Karelaia (2007) specified conditions under which TTB with its cue
ordering is superior to weighing cues equally, such as high dis-
persion of cue validities, whereas Rieskamp and Otto (2006)
showed that people intuitively adapt their heuristics to environ-
mental conditions.

Having clarified the misunderstandings in Dougherty et al.’s
(2008) conjectures, we now describe some of what we see as the
real issues relating to cue-ordering heuristics, such as TTB, elim-
ination by aspects, and fast and frugal trees (Gigerenzer, 2004).

How Do Social and Individual Learning Combine When
Ordering Cues?

Gigerenzer and Goldstein (1996) did not deal with the question
of how cue orders are learned. If one had asked us at that point in
time, we would have conjectured that it occurs through feedback
learning. When Todd and Dieckmann (2005) put this idea to test,
it turned out that simulated agents can learn cue orders that way
but that convergence toward the ecological cue order is slow if
learning occurs while inferences are being made with TTB. To
avoid slow convergence, a person who has little knowledge of cues
can start with a trial-and-error phase for exploring cues and only
later switch to an application phase in which the heuristic is used.
However, there is a more interesting social solution to the problem
of slow individual learning. Individual learners might exchange the
information they have after a number of individual trials, continue
with individual learning, converse again, and so on. We tested
several social exchange rules: the average rule, the Borda rule, the
Condorcet rule, and imitate the successful. All social rules, except
the Borda rule, sped up individual learning. The simplest rule––to
imitate the cue order of the most successful member––led to the
best results (Garcia-Retamero, Takezawa, & Gigerenzer, 2006).
Psychologists still know little about how social learning supports
individual learning in judgment, classification, and decision mak-
ing, which mirrors the unfortunate truth that many cognitive the-
ories ignore the crucial role of social input.

How Do Minds Create Robust Rather Than Optimal Cue
Orders?

Does it pay to compute the optimal cue order? The problem of
finding the optimal (best) cue order turns out to be NP-hard
(Schmitt & Martignon, 2006), that is, when the number of cues
vastly increases, determining the optimal order quickly becomes
too time-consuming for minds and computers. Tractability, in our
view, is an important and necessary condition for what Dougherty
et al. (2008) called “psychological plausibility.”

Now consider situations with a small number of cues in which
the optimal order can be determined. Should a rational mind try to
compute the best cue order from the existing data, or could a
satisfactory order be preferable to the optimal one? Using cross-
validation, Martignon and Hoffrage (2002) showed that the opti-
mal cue order determined from a learning sample drawn from a
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population was, in fact, not necessarily the optimal one in new
samples from the same population. Surprisingly, orderings based
on validity produced, on average, better performance in the new
samples as compared with those that were optimal in the learning
sample. The optimal order was less robust than the validity order.
This leads to what we see as a second necessary condition for
psychological plausibility: robustness. A cue order should be ro-
bust, not optimal (relative to the learning sample).3

Similarly, Brighton (2006) showed in dozens of real-world
problems that TTB often outperformed neural networks, exem-
plar models, and other complex procedures that compute con-
ditional weights. TTB’s surprising predictive accuracy is partly
due to its ignoring dependencies between cues (just like naive
Bayes) rather than its relying on the apparently rational calcu-
lation of covariation matrices. Armelius and Armelius (1974)
documented that people are at a loss when they are confronted
with the task of estimating partial correlations between cues.
This cognitive limitation, however, can now be put into a
different functional perspective. In a range of situations, our
minds can make more accurate inferences when they ignore the
dependencies between cues; less can be more. This finding
aligns with observations that cognitive limitations can actually
promote better cue orders and better inferences (see also
Hertwig & Todd, 2003).

Given the predictive power of simple, unconditional weights,
new research questions need to be posed: How can we charac-
terize situations in which unconditional cue orderings will lead
to more accurate inferences? When do conditional weights, as
used by all rational theories, begin to pay? What role do
cognitive limitations play in enabling simple and robust infer-
ence processes?

How Do Minds Adapt Cues to the Task Environment?

In Gigerenzer and Goldstein (1996), we distinguished three
kinds of search: search by validity, search by recency, and
random search. In a stable environment with sufficient and
reliable feedback, search by validity is most accurate; in the
absence of these features, recency can be better because it is
faster and more frugal. If one has to learn from scratch, then
random search seems to be the only option. Another environ-
mental feature is the discrimination rate of the cues. When these
rates vary substantially, it pays to base search on a combination
of validity and discrimination rate, such as success, as proposed
by Martignon and Hoffrage (2002) and studied by Newell et al.
(2004). Moreover, sensory and environmental constraints often
impose order. Consider two competing male deer during rutting
season. If the harem holder roars more impressively, then the
challenger may give up immediately and walk away; otherwise,
parallel walking is initiated, which provides cues to assess each
other’s physical fitness at closer distance. If these cues do not
stop the contest, then they begin headbutting, their riskiest
activity, which can lead to serious injuries (Enquist & Leimar,
1990). Here, the cue order is dictated by the access of the senses
to the environment: Roaring can be heard first, visual cues need
closer distance, and tactile cues require physical contact. Fi-
nally, in gambling environments, the priority heuristic sequen-
tially considers different attributes of the lotteries, which cannot
be expressed in terms of cue validities (Brandstätter, Gigeren-

zer, & Hertwig, 2006). A few pioneer experiments have inves-
tigated how people adapt search rules to environmental condi-
tions (e.g., Rakow et al., 2004, 2005). How evolutionary, social,
and individual learning interact to enable (or prevent) the ad-
aptation of cue orders, or, more generally, heuristics, to the task
environment is a largely open question.

The Recognition Heuristic Is Consistent With Memory
Models

Is the recognition heuristic consistent with existent memory
models? Dougherty et al. (2008) questioned its psychological
plausibility: “To our knowledge, the only model within the fast
and frugal tool kit to specify the underlying memory processes
and primitives is the fluency heuristic, which is specified within
the ACT-R framework (Schooler & Hertwig, 2005)” (p. 210,
Footnote 12). However, the recognition heuristic was also im-
plemented in the ACT-R framework, as reported in the same
article. If implementation in an empirically validated memory
model is the definition of plausible and if ACT-R is considered
as such a model, then the recognition heuristic is psychologi-
cally plausible. Similarly, but more recently, the recognition
heuristic was implemented in a signal-detection model
(Pleskac, 2007).

The recognition heuristic is not a model of memory pro-
cesses, rather, it models how inferences are made on the basis
of the output of memory processes. It draws on an all-or-none
recognition judgment, which Dougherty et al. (2008) claimed
“is counter to the literature on recognition memory” (p. 204).
However, one needs to distinguish between continuous trace
activation and a binary recognition judgment (e.g., Malmberg,
2002; Pleskac, 2007). For instance, Schooler and Hertwig
(2005) assumed that activation of a memory record (the con-
tinuous underlying value) cannot be accessed directly. How-
ever, its activation does govern sensations of which people can
be aware, namely yes–no recognition judgments (retrieval of a
memory record) and experienced recognition time (recognition
latency). The assumption of being able to arrive at yes–no
recognition judgments is intuitively plausible; we classify peo-
ple as recognized or unrecognized with ease and hesitate only
rarely. In many experiments, however, the task is set up to make
discrimination intentionally difficult. Furthermore, yes–no rec-
ognition is consistent with how recognition is modeled in
ACT-R and other theories (see Schooler & Hertwig, 2005, pp.
617– 618, 625).

Schooler and Hertwig (2005) showed that an intermediate de-
gree of forgetting enables both the recognition heuristic and the
fluency heuristic to make more accurate inferences. This result is

3 The same robustness argument applies to orders established by condi-
tional cue validities (that are sequentially computed on the subset of pairs
for which higher ranked cues did not discriminate). In the learning sample,
ordering cues by conditional validity was more accurate than by (uncon-
ditional) validity and almost as good as the optimal order. However, when
tested in new samples, ordering by conditional validity led to worse
inferences than when simply ordering by validity (Martignon & Hoffrage,
2002).
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an extension of the less-is-more effect that can arise from the
recognition heuristic. Dougherty et al. (2008) could have discussed
how their familiarity model differs from the fluency heuristic but
instead presented their model as if it were an alternative to the
toolbox approach.

What we do believe to be an interesting contribution is
Dougherty et al.’s (2008) new model for a less-is-more effect.
Such a between-domain effect is illustrated by our finding that
American students were slightly more accurate in judgments
about the largest German cities as opposed to the largest Amer-
ican cities (the domains being the two countries), despite know-
ing less about German cities. In contrast, a within-domain
less-is-more effect is illustrated by Figure 2 in Goldstein and
Gigerenzer’s (2002) article, where three sisters differing in
recognition knowledge make judgments about the same domain
of objects. We have distinguished between three kinds of less-
is-more effects: within domain, between domain, and during
knowledge acquisition (Goldstein & Gigerenzer, 2002, p. 83).4

However, Dougherty et al. did not mention this, instead sug-
gesting incorrectly that we “treated participants from different
ecologies [i.e., domains] as points on the same curve” (p. 205).
This is an oversight that could have been easily avoided. We
might add that Dougherty et al.’s new model is not the first
alternative explanation. In Gigerenzer and Goldstein (1996,
Figure 6), we showed that three other models that do not
involve the recognition heuristic but instead treat recognition as
a cue can produce a nonmonotonic pattern of accuracy. Note
that the recognition heuristic does not assume that too much
knowledge leads to poor inference; it predicts when it will and
will not happen. The task for the alternative models is then to
specify the conditions under which the effect occurs.

Dougherty et al.’s (2008) simulations involve two models that
explicitly (frequency model) or implicitly (familiarity model) en-

code frequency information. To make this clear, consider Figure 1.
We had a simulated participant sample 50,000 times from the 10
most cited German cities in Dougherty et al.’s Chicago Tribune
data. The simulation’s memory processes are those of the famil-
iarity model (Minerva 2). It becomes evident that the echo inten-
sity of the familiarity model mirrors with impressive accuracy the
frequency information of the automatic frequency counter. This
reflects the fact that Minerva 2, though not explicitly a frequency
counter, stores and processes every instance and creates an “oblig-
atory, analog representation of frequency” (Hintzman, 1988, p.
547). Oddly enough, frequency counters are what our critics dis-
missed as psychologically implausible.

The familiarity model Dougherty et al. (2008) proposed has its
merits and limitations. On the one hand, it treats paired comparisons
with one simple decision rule (choose the more familiar). On the other
hand, it cannot account for the evidence that people make inferences
based on cues other than familiarity—although this problem would be
resolved if Dougherty et al. were willing to consider the familiarity
model as one of the tools in the adaptive toolbox rather than as a
universal strategy. We would be curious to hear their thoughts on the
connection between the adaptive toolbox and their Minerva-DM
approach. The adaptive toolbox approach is taken by Schooler and

4 Dougherty et al. (2008) presented their simulation finding that the
recognition heuristic, combined with TTB, can predict both the presence
and the absence of a less-is-more effect as something new and as sugges-
tive of excessive model flexibility. However, they neglected to mention
that we have specified the exact conditions under which the effect does and
does not occur––such as when the recognition validity exceeds the knowl-
edge validity and other assumptions hold (Goldstein & Gigerenzer, 2002,
pp. 79–80).
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Figure 1. Familiarity, defined by Minerva 2�s echo intensity, mirrors actual frequency (citations) and expe-
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Hertwig’s (2005) ACT-R implementation of the fluency heuristic
(which corresponds to the familiarity model) and the recognition
heuristic. If recognition does not discriminate, then an inference could
be made by the fluency heuristic, TTB, or another heuristic, as the
constraints of the environment dictate.

Criteria for Psychological Plausibility

We strongly agree with Dougherty et al. (2008) that psychology
needs models rather than labels for cognitive processes. We also
agree that these models should be psychologically plausible. How-
ever, what does this term mean? We conclude with what we
believe are important criteria for assessing the psychological plau-
sibility of a model.

Tractability

The computations postulated by a model of cognition need to be
tractable in the real world in which people live, not only in the
small world of an experiment with only a few cues. This eliminates
NP-hard models that lead to computational explosion, such as
probabilistic inference using Bayesian belief networks (Cooper,
1990), including its approximations (Dagum & Luby, 1993). Trac-
tability is one condition for psychological plausibility that is easily
met by simple heuristics.

Robustness

The cognitive inferences and estimations (e.g., of cue orders)
involved should be robust rather than optimal (on the learning
sample; see Roberts & Pashler, 2000). In other words, cognition
should be successful in foresight rather than in hindsight and not
waste effort on computations and estimations that deteriorate per-
formance. Robustness increases with the simplicity of a model and
decreases with the number of free parameters.

Frugality

Plausible models of cognitive processes need to specify not
only how information is integrated but also when information
search is stopped in the first place. Stopping rules, in turn,
motivate search rules, which can order cues such that good cues
are likely to be encountered first. In an age of overwhelming
information, it is clear that a crucial issue is knowing when to
ignore further information.

Speed

The cognitive processes assumed by a model should be able to
be executed quickly. Speed is often, albeit not always, an impor-
tant feature of everyday cognition and action.

Evidence

Models that satisfy these four requirements should be consistent
with what we know about cognition. For Schooler and Hertwig
(2005), implementing heuristics in cognitive architectures, such as
ACT-R, fulfills this requirement. We believe that fast and frugal
heuristics are among those cognitive models that satisfy these
criteria well.
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Postscript: Fast and Frugal Heuristics

Gerd Gigerenzer
Max Planck Institute for Human Development

Ulrich Hoffrage
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Daniel G. Goldstein
London Business School

In their postscript, Dougherty, Franco-Watkins, and Thomas
(2008) asserted that models of fast and frugal heuristics have been
vaguely specified. We strongly reject this claim. The computa-
tional models of search, stopping, and decision rules allow for
precise predictions. In fact, many researchers have tested under
which conditions people follow which heuristic (e.g., Bröder &
Schiffer, 2003), compared the predictions of heuristics to those of
rational models (e.g., Bergert & Nosofsky, 2007), and studied the
ecological rationality of different heuristics through statistical
analysis and computer simulation (e.g., Hogarth & Karelaia,
2007).

Our point that ecological validity (the relationship between cue
and criterion in the environment) is not the same as cue validity
(the perceived relationship between cue and criterion in a person’s
mind) is not a “new found clarity;” it was made in Gigerenzer,
Hoffrage, and Kleinbölting’s (1991) article. It has nothing to do
with the accuracy of predictions. As in Brunswik’s (1955) lens
model, ecological validity refers to what is in the environment,
and cue validity (Brunswik’s cue utilization) refers to what is in
the mind. Because people typically have imperfect knowledge
of environmental structures, they accordingly rely on sample-
based estimates. Dougherty et al. (2008, p. 212) took this to
imply that Take The Best “operates on ANY subjective cue
order, even if it were completely idiosyncratic.” This claim is
incorrect. A proper test of search rules used by people is fairly
straightforward. First, the predictions of several models (not
just one) for ordering cues—say, validity, success (Bayesian
expected information gain), and beta weights (Brunswik’s in-
tuitive statistician)—are derived for the experimental task. Each
prediction is based on the ecological measures of validity,
success, and beta weights, or, if learning samples are small, on
the sample-based measures. Next, each individual pattern of
judgment (rather than the aggregate) is tested against the pre-
dictions of each model. If an individual’s cue order is, for
instance, closer to the ecological measures of success than to
those of validity and beta weights, then he or she would be
classified as relying on success (e.g., Rakow, Newell, Fayers, &
Hersby, 2005). In the same way, competing models of stopping
rules and decision rules can be tested. We are interested in
knowing which cue orders are elicited by which situation and
not in proving that everyone always orders cues by validity.

Now consider simulations. Here, the situation is different be-
cause, unlike the participants in an experiment, the researcher
knows the exact ecological validities (or other measures of corre-
lation). Many simulations tested Take The Best with the ecological
validities and then compared it with other models, such as multiple
regression, with the ecological beta weights. For instance, Garcia-

Retamero, Takezawa, and Gigerenzer (2006) used Take The Best
with ecological validities as a benchmark and showed by means of
simulation that social learning can boost accuracy beyond that
reached with ecological validities alone. Dougherty et al. (2008)
quoted from this article (and two other articles using simulations)
and incorrectly claimed that we also wrongly equate ecological
validities with cue validities. This is not the case. In simulations,
one can test every model (not just Take The Best) with the
ecological weights, but this does not imply that a real person would
have exact knowledge of these weights.

Dougherty et al. (2008) also argued that the recognition heuristic
might be vague because “to derive predictions based on the rec-
ognition heuristic, one needs to instantiate it at the level of a
recognition memory model, as has been done by Pleskac (2007)
and Schooler and Hertwig (2005)” (p. 213). We would like to
mention that this work is in fact from our research group: Schooler
and Hertwig’s (2005) article is from our lab at the Max Planck
Institute, and Pleskac worked in Hertwig’s lab while he wrote his
recognition article. We wish that Dougherty et al. (2008) had
instead dealt at greater length with the fundamental questions that
arise in their postscript.

General Purpose or Domain Specific?

Leibniz (1677/1951) hoped to reduce rational thinking to a
single, universal calculus. Although he failed to realize it, his
beautiful dream persists in many forms in current cognitive psy-
chology, including formal logic, expected utility theory, and
Bayesian inference. By definition, a single calculus is general
purpose, so theories of cognition based on Leibniz’s ideal do not
have to address the question of ecological rationality (i.e., the
question of which cognitive strategies match which environmental
structures). However, if—like Dougherty et al. (2008)—one as-
sumes a small number of general-purpose strategies rather than
Leibniz’s one, then this question must be addressed. Because their
proposed “general-purpose” strategy of choosing the most familiar
object is not viable in all situations, the question is as follows: How
do minds decide when to make a judgment by familiarity and when
to switch to another “general-purpose” strategy? That requires
research on the ecological rationality of the familiarity heuristic
and, more generally, on how people select between several
general-purpose strategies.

How Do People Select Between Heuristics?

We listed this important question as a topic of future research
in Table 1 of our reply, and it is also essential for understanding
how a mind would operate with several general-purpose heu-
ristics. Had Dougherty et al. (2008) argued that the present
knowledge of heuristic selection, as opposed to models of
heuristics, is rather vague, then they would have made a fair
point. However, there is progress on the issue of selection as
well. The study of ecological rationality has identified environ-
mental structures in which, for instance, tallying is more accu-
rate than Take The Best, and this provides testable conditions
for when people switch between these heuristics. Moreover, in
the case of individual learning by feedback, members of our
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group have developed a formal model of strategy selection
(Rieskamp & Otto, 2006).

Criticism can be fruitful, even more so if several theories were
to be evaluated and compared using the same criteria. Moreover,
understanding the respective advantages and blind spots should
serve not only criticism of other theories but also theory integra-
tion. What psychology lacks in comparison with economics or
physics is an integrated system of theories. Now is the time to ask
what we can learn from other points of view and how we can
integrate disparate theories to secure the future of psychology.
Cumulative progress can hardly be achieved otherwise.
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