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ABSTRACT
Having a crowd estimate a numeric value is the original inspi-
ration for the notion of “the wisdom of the crowd.” Quality
control for such estimated values is challenging because prior,
consensus-based approaches for quality control in labeling
tasks are not applicable in estimation tasks.

We present VOXPL, a high-level programming framework that
automatically obtains high-quality crowdsourced estimates
of values. The VOXPL domain-specific language lets pro-
grammers concisely specify complex estimation tasks with
a desired level of confidence and budget. VOXPL’s runtime
system implements a novel quality control algorithm that au-
tomatically computes sample sizes and obtains high quality
estimates from the crowd at low cost. To evaluate VOXPL, we
implement four estimation applications, ranging from facial
feature recognition to calorie counting. The resulting pro-
grams are concise—under 200 lines of code—and obtain high
quality estimates from the crowd quickly and inexpensively.

ACM Classification Keywords
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D.3.2 Language Classifications: Specialized application lan-
guages; G.3 Probability and Statistics: Probabilistic algo-
rithms (including Monte Carlo)

Author Keywords
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INTRODUCTION
In this paper, we introduce VOXPL, a high-level program-
ming framework and quality control algorithm for harnessing
the wisdom of the crowd to obtain high-quality estimates of
continuous quantities. For any estimation task, programmers
provide their question together with a target confidence inter-
val and a maximum budget. VOXPL incrementally increases
the sample size, minimizing the cost, until either the estimate
is sufficiently refined or the budget is exhausted. In the latter
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case, VOXPL returns the best estimate possible given the bud-
get. VOXPL significantly extends the reach of crowdsourcing
to encompass collective estimation tasks.

The earliest work using the crowd to estimate a quantity—the
canonical example of the phrase “the wisdom of the crowd”—
is Galton’s 1906 paper describing the accurate estimation of
the weight of an ox using a crowd’s guesses [16, 44]. As Gal-
ton noted, many of the crowd’s guesses were wrong. Nonethe-
less, by aggregating the guesses, an accurate estimate could be
obtained. In Galton’s case, the estimate was within an aston-
ishing 0.8% of the true value. Galton argued that the median
best represented the opinion of the crowd—the vox populi, as
he put it—since “every other estimate [was] condemned as too
low or too high by a majority of the voters”. VOXPL builds
on Galton’s insight, applying it to crowdsourcing in order to
obtain high-quality estimates.

Automatic quality control. Modern day programmers who
rely on the crowd need an automated method for generating
high quality estimates. Without explicit data quality guaran-
tees, programmers are left with either manually inspecting the
data for errors—an onerous process for tasks of any realis-
tic scale—or writing their own error checking routines and
potentially wasting resources or falling short of quality goals.

A naive quality control strategy recruits a redundant set of
workers and aggregates their responses. Unfortunately, finding
the right number of workers requires that programmers strike
a delicate balance: recruit too few workers and the task falls
short of quality goals; recruit too many workers and worker
time and task budgets are wasted. Without careful attention to
efficiency, these human factors become acute pain points for
both programmers and workers. VOXPL helps crowd workers
because it avoids asking for redundant data. VOXPL helps
programmers because quality goals can be fully automated by
way of a simple, high-level abstraction—the target confidence
interval—that eliminates the need for manual checking.

Estimation vs labeling. Prior algorithmic and programmatic
approaches to quality for crowdsourced work focus on labeling
tasks, such as determining whether a picture is of a cat or a
dog. However, these approaches do not extend to estimation
tasks such as determining the number of calories in a plate
of food, or guessing the weight of an ox. Estimation tasks
are qualitatively and quantitatively different from labeling
tasks. Labeling tasks ask workers to choose a single best
option from a discrete (and low-cardinality) set of options.
By contrast, estimation tasks ask workers to approximate a
continuous value (or at least from a set with high cardinality).
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This difference means that algorithms that choose a label based
on voter agreement do not work for estimation tasks: not only
is there rarely a majority opinion, but worker responses are
also not likely to agree at all on any single value.

This paper makes the following contributions:

• VOXPL automates the computation of high-confidence esti-
mates from the crowd. By adjusting sample sizes on the fly,
VOXPL does not waste crowd resources by asking for un-
necessary input. In addition, VOXPL makes it possible for
ordinary programmers to harness the wisdom of the crowd
for estimation tasks in their applications. VOXPL eases the
burden both on programmers and on crowd workers.

• The VOXPL algorithm, which is the first to systematically
address quality for estimation tasks. VOXPL lets program-
mers trade cost for efficiency, producing estimates given a
confidence level (e.g., 95%), a target confidence interval
(e.g., ±50), and a budget.

• The VOXPL framework, a runtime system that automati-
cally generates the correct sampling procedure and statis-
tical tests for requested estimates. VOXPL ensures that
estimates are both efficient and statistically sound.

• Empirical validation that VOXPL is concise, expressive, and
efficient with four case studies: (1) estimating the caloric
content of meals; (2) facial feature recognition; (3) estimat-
ing the mass of an ox; and (4) identifying the location of
objects in photos. In every case, VOXPL obtains accurate
estimates from the crowd with few lines of code, quickly,
and at low cost.

Technical Challenges
VOXPL is a declarative programming language for crowd-
sourcing estimates. Its central feature is an abstraction that
lets programmers trade cost for quality. This abstraction lets
VOXPL adjust sample sizes on the fly, efficiently utilizing
human resources by asking for only necessary input. To make
this possible, VOXPL must address the following challenges:

Guaranteeing quality for estimation tasks. As discussed
above, estimation tasks pose unique quality control challenges
that render prior approaches designed for labeling tasks inad-
equate. Algorithms based on voting do not work (or would
require a prohibitive number of responses) when the range of
possible answers is large. By contrast, the VOXPL algorithm
uses a non-parametric statistical procedure that produces high-
quality estimates without the need for voting and without any
assumption about the distribution of responses.

Automatically computing the appropriate sample size.
Programmers do not necessarily know the “right” sample size
to choose for an estimation task. A sample needs to be large
enough so that the estimated quantity is likely to be correct
but small enough to be cost-effective. Computing the appro-
priate sample size a priori requires knowing the response
distribution, the very thing that the programmer is attempt-
ing to measure. This limitation can be skirted by sampling
incrementally, but this procedure risks introducing bias into
results because there is a small probability that constraints

will be satisfied by random chance [20]. The VOXPL runtime
incrementally finds the minimum sample size for any possible
estimation program, correcting for bias using the Bonferroni
method, to ensure that estimates are valid [18].

Automatically guaranteeing the soundness of estimates.
The true distribution of responses from workers is not usually
known a priori. Typically, practitioners choose the right sta-
tistical procedure by making assumptions about the data (e.g.,
it is normally distributed). Unfortunately, if a programmer
is allowed to specify any arbitrary estimation task, no distri-
butional assumption is valid. Because the VOXPL algorithm
is nonparametric, it performs the right sampling procedure
automatically regardless of the distribution of responses.

Enabling flexible selection of quality requirements. In
some applications, such as facial recognition and calorie count-
ing, tight error bounds are important. In others, like estimating
the construction cost of a house, rougher approximations are
acceptable. Only the programmer knows how much uncer-
tainty is tolerable in a given application. Unfortunately, mini-
mizing uncertainty is in direct tension with minimizing cost,
which makes it hard for programmers to balance these two
goals correctly. The VOXPL domain-specific language lets
programmers communicate their quality goals to the runtime
simply and intuitively.

Supporting multidimensional estimates. While it can be
straightforward to compute confidence for statistics over a
single dimension (e.g., the median), there is in general no
simple method to estimate confidence for arbitrary statistics
over multiple dimensions. VOXPL lets programmers compute
multidimensional estimates simply, by composing VOXPL
functions (see Figure 1 for an example). The underlying run-
time automatically computes the correct estimator and bounds,
regardless of the number of dimensions and statistics used.

Supporting functions over estimates. Estimates can be used
as inputs to calculations, such as computing the sum total
caloric intake from a set of calorie estimates. For the error
of the whole calculation to be valid, quality control meth-
ods need to consider the entire computation. Unfortunately,
there are no known analytical solutions to compute consistent
error bounds for arbitrary mathematical transformations of es-
timates. VOXPL instead employs an empirical method called
the bootstrap—which can only be used at runtime—that guar-
antees consistency for arbitrary functions of estimates [13].

Automatically determining the wage to pay workers.
While Galton’s ox-weighing task benefitted from free labor
in the form of contest participants, crowdworkers cannot (and
should not) be expected to work for free or marginal wages.
However, it is difficult to predict the cost of obtaining labor
to do estimation tasks a priori. VOXPL dynamically and
adaptively adjusts the amount of money to pay workers, while
ensuring that they are always paid at the same effective hourly
rate (by default, the US Federal minimum wage).

Ensuring fairness for crowdworkers. VOXPL is designed
to respect the Worker’s Bill of Rights to the greatest extent
possible [22]: it never arbitrarily rejects work; it pays workers
as soon as the work is completed; it pays workers the US
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(a) (b)
Figure 1. Workers were asked to identify the center point of the nose in a set of images of people and animals. Red dots in these examples denote
individual responses, the cross denotes the centroid, and blue ellipses denote the 95% confidence interval. The difference in variance between (a) and
(b) illustrates that some tasks are inherently more difficult than others. Intuitively, VOXPL allows programmers to ensure minimal quality thresholds
by limiting the maximum size of confidence ellipsoids, even in n dimensions.

minimum wage by default; and it automatically raises pay for
tasks until enough workers agree to take them.1

DOMAIN-SPECIFIC LANGUAGE
VOXPL is a declarative domain-specific language (DSL) for
crowdsourcing estimation tasks. VOXPL is embedded within
Scala, a programming language that runs on the Java Virtual
Machine. This embedding lets VOXPL functions work exactly
like ordinary functions in Scala and Java, allowing users to
freely intermix them with ordinary application code. Coordina-
tion of multiple crowdsourcing tasks (including interdependent
tasks) is achieved by composing VOXPL functions.

VOXPL Components
The VOXPL DSL is built on top of a simple grammar that
ensures that all user-defined expressions are well defined.
VOXPL leverages the underlying type system such that only
valid estimation programs compile. For those that do, VOXPL
is always capable of inferring error bounds.

Programmers perform complex estimates with VOXPL using
the combinator pattern [28]. Combinator-based languages
have two kinds of functions: (1) those that create primitive
values, and (2) those that combine primitives into more com-
plex structures. Primitive values are strictly a function of their
inputs and do not have side-effects (i.e., they are purely func-
tional). In VOXPL, the key primitive value is an estimate: a
random variable representing responses to a question.

Estimate creation. Programmers create estimates with the
Estimate function and a small set of parameters. The most
important function parameters are text (the question posed
to the worker), budget (the maximum amount of money that
VOXPL may spend estimating a given question), and confi-
dence_interval (the maximum width of the estimate’s con-
fidence interval). Other parameters are automatically supplied
1To avoid worker disputes, we paid all workers regardless of work
quality for all evaluations in this paper.

def numCalories(url: String) = Estimate (
confidence_interval = SymmetricCI(25),
text = "How many calories are in the food pictured?",
image_url = url
)

Figure 2. A complete VOXPL definition for a function that estimates
the number of calories for breakfast. Here, the programmer requests an
estimate with a maximum tolerable error of±25 calories (for the default
95% confidence interval).

with sane defaults, but may be overridden by the programmer:
estimator (the L1 median by default), confidence (the con-
fidence level, with a default of 95%), title (which displays a
task title on MTurk, defaulting to the text field when not pro-
vided), and image_url (which optionally displays an image).

Figure 2 shows a VOXPL function that computes the caloric
content of a plate of food. This VOXPL example contains the
bare minimum of information required to perform the job. All
other details, including task defaults, scheduling, pricing, and
quality control are completely managed by the runtime. When
this function is executed, it launches a set of tasks on the target
crowdsourcing platform (e.g., it posts a HIT on MTurk).

Estimate composition. Programmers combine estimates with
arbitrary Scala functions using the combineWith combinator.
Combinators take two estimates (e.g., numCalories(lunch)
and numCalories(dinner)) and a combining function of
the estimates. Figure 3 shows two combinators applied in
sequence using +.

Estimation Question Types
VOXPL provides two estimation question types: Estimate
and MultiEstimate. The former asks workers a single esti-
mation question per form. The latter batches an arbitrary num-
ber of questions into a single HIT, enabling joint estimation
of multiple quantities. For example, the x and y coordinates
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val total = numCalories(breakfast) +
numCalories(lunch) +
numCalories(dinner)

Figure 3. A complete VOXPL definition for a combined calorie estimate
for the whole day using the function defined in Figure 2. breakfast,
lunch, and dinner are, respectively, image URLs for breakfast, lunch,
and dinner. + is syntactic sugar for combineWith using the function
(a:Double) => (b:Double) => a + b.

shown in Figure 1 were obtained with the MultiEstimate
function shown in Figure 5.

Confidence Interval Constraints
VOXPL uses confidence intervals to tie together the statistical
notion of precision with a programmer’s intuitive notion of
tolerable error. Given a statistic (e.g., the median), confidence
(e.g., 95%), and sample data, an empirical confidence interval
can always be inferred (e.g., ±25.8). By asking the program-
mer to declare a target confidence interval (e.g.,±25), VOXPL
has sufficient information for a well defined statistical proce-
dure: VOXPL gathers reponses from the crowd, repeatedly
testing whether the inferred interval is at least as tight as the
target interval, until either it is (with high probability), or the
budget is exceeded. At this point, VOXPL returns the result.

There are three kinds of interval constraints:

1. Symmetric confidence intervals, where bounds are defined
as symmetric low and high deltas around a single point. For
example, confidence_interval = SymmetricCI(50)
with confidence = 0.95 (the default) means that the low
and high bounds should be defined as the bounds of the 95%
confidence interval about the point estimate.

2. Asymmetric confidence intervals, where bounds are de-
fined as distinct low and high deltas around a single
point. This constraint is primarily intended to support
one-sided confidence intervals, although it is strictly more
powerful. For example, confidence_interval = Asym-
metricCI(0,45) along with the default confidence =
0.95 defines the one-sided, 95% confidence interval above
the point estimate. Using asymmetric confidence intervals
lets programmers obtain results more efficiently when they
do not care equally about both sides of the distribution.

3. Unconstrained confidence intervals, where the user supplies
only a fixed sample size. This option disables VOXPL’s
dynamic sample size calculation. VOXPL simply returns
the inferred symmetric confidence interval (at the desired
confidence level) for the given sample size.

Combinator Logic
The VOXPL domain-specific language (DSL) is built around
a small combinator logic that informs the runtime how to
convert user-defined tasks into estimation and joint estima-
tion procedures. While VOXPL uses the L1 median as the
default estimator, VOXPL can use any user-defined mathemat-
ical function (or combinations thereof) as estimators. Joint
estimation combinators control the combined error of an ar-
bitrary number of estimates. VOXPL automatically converts
estimates into joint estimates when necessary.

For example, suppose a programmer wants to use the func-
tion defined in Figure 2 to estimate their caloric intake for
the entire day as numCalories(breakfast) + numCalo-
ries(lunch) + numCalories(dinner). The combina-
tion of these estimates, each with its own confidence interval,
is also an estimate. However, the combined estimate’s con-
fidence interval is not in general a straightforward function
of each component’s confidence interval [13]. Nonetheless,
programmers using VOXPL’s DSL are guaranteed to com-
pute estimates with correct error bounds, satisfying a property
known as estimator consistency. This feature frees program-
mers from the fact that, in general, combined estimates en-
tail complicated—and sometimes unknown—closed forms for
composed error distributions. An application that combines
estimates for breakfast, lunch, and dinner is shown in Figure 3.

Runtime
The VOXPL runtime generalizes and subsumes the AU-
TOMAN runtime system, which embeds labeling tasks into
a programming language. VOXPL inherits AUTOMAN’s au-
tomatic scheduling, pricing, and budgeting. For a detailed
discussion of our modifications, see Related Work.

ALGORITHM
The VOXPL quality control algorithm produces valid esti-
mates for all VOXPL programs that compile. Since statistical
estimation theory can only provide limited analytical guidance
for exact solutions to computing bounds, VOXPL skirts these
limitations by solving for approximate solutions instead. To
do this, VOXPL relies on the basic bootstrap, a nonparametric
(i.e., distribution-free) Monte Carlo procedure that estimates
error bounds for arbitrary functions of unknown multidimen-
sional distributions [12, 13, 46]. The statistic in question can
be simple (like the median) or complex (like the sum of L1
medians). Armed with bootstrapped confidence bounds and
the fact that uncertainty decreases as sample sizes increase,
the VOXPL algorithm greedily samples from the crowd until
either the programmer’s constraints are met or the budget is
exceeded. If the budget is exceeded, the best known estimate
is returned. This section describes the algorithm formally.

Estimation
The goal of VOXPL is to estimate an unknown parameter θ

of an unknown distribution F of crowd responses on space X .
Let X = (x1, . . . ,xn) be a real-valued, i.i.d. sample of responses
from F of size n.

Point estimates. Let θ̂(X) be an arbitrary real-valued statistic
(a function of X), the point estimate of θ .

Interval estimates. The fact that θ̂ is an arbitrary, user-
defined function over an unknown distribution F complicates
interval estimation since precise confidence bounds are only
known for specific statistics (e.g. the mean) of known distribu-
tions (e.g. the normal distribution). Nonetheless, nonparamet-
ric methods, which relax parametric assumptions, can be used
to estimate arbitrary θ̂ with high accuracy [49].

VOXPL uses the basic bootstrap procedure for estimation [46].
The bootstrap produces an estimate of parameter θ , denoted
θ̂ ∗, by way of the statistic θ̂ and random “replicates” of X
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we denote X∗. Let F̂ be the empirical distribution such that
each x ∈ X contributes 1/n mass. Let B be the number of
bootstrap replications. For each b from 1 . . .B, a bootstrap
sample X∗b is drawn from F̂ randomly with replacement and
used to compute the bth bootstrap replication θ̂ ∗(b).

VOXPL uses the percentile method to calculate the confidence
interval [13]. Let θ̂(α) = ĈDF

−1
(α), a function that returns

the real value corresponding to the (1−α) ·100th percentile
of bootstrap replicates θ̂ ∗. Thus, θ ∈ [θ̂(α), θ̂(1−α)]. As
n→∞, [θ̂(α), θ̂(1−α)] will include θ with probability 1−α .

Joint estimates. VOXPL is capable of estimating n param-
eters simultaneously, where n is an arbitrarily large number.
Joint estimation is a straightforward generalization from the
single estimation case. The joint significance threshold in
this case is β = max1−α1, . . . ,1−αn (the maximum of all
of the individual significance levels), and the n-dimensional
confidence interval is defined as the region containing all of
the estimates with probability β .

Sample Size Determination
VOXPL’s initial sample size is 12 by default; this value is the
knee of the curve for confidence intervals over a normally-
distributed population [6, p. 20]. If the distribution of re-
sponses happens to be normal, this value minimizes latency.

There are two outcomes after sampling: (1) the confidence
interval satisfies the user’s width and confidence level, or (2)
it does not. In case (1), VOXPL returns the estimate and
confidence interval. Otherwise (2), it refines the bounds by
obtaining another sample; the sample size doubles after each
iteration. In the event that the crowd does not supply timely
responses (a “timeout”), VOXPL first checks whether the
estimate already meets the user’s constraints before scheduling
replacement tasks; if so, it returns that estimate.

Bounds estimated by VOXPL can accurately reflect the true
variability of the population yet not meet (unrealistic) user
constraints. The budget parameter serves as a limiting factor
on the total sample size, ensuring that estimation always ter-
minates with what the programmer believes to be a reasonable
maximum cost.

Correcting for Multiple Comparisons
Statistical procedures that determine the sample size dynami-
cally (i.e., that do not run with a fixed sample size) run the risk
of terminating too early. The reason is that they repeatedly
test whether they have enough evidence to terminate the study.
Strictly speaking, each test constitutes a different hypothesis.
The intuition behind the problem is simple: given a statistical
test that is capable of correctly rejecting the null hypothesis
with a 95% probability (i.e., with a p-value of 0.05), then in
expectation, applying that test 100 times will incorrectly reject
the null hypothesis 5% of the time.

To avoid this problem, VOXPL employs the Bonferroni cor-
rection, which keeps a count of the number of hypotheses and
adjusts the test’s confidence threshold accordingly [11]. More
precisely, the Bonferroni correction controls what is called the

familywise error rate, the probability of rejecting at least one
true hypothesis.

Let H1, . . . ,Hm be a set of m hypotheses, let pi, . . . , pm be their
associated p-values, and let 1−α be the confidence level. The
Bonferroni correction ensures that rejecting the null hypothesis
for all pi ≤ α

m controls the familywise error rate. Since in
VOXPL’s case, all hypotheses test the same thing (“have user
constraints been met?”), it is not useful to conclude that some
tests be rejected while others are not. In other words, the only
test that matters is Hm. Therefore, VOXPL only terminates its
sampling procedure when p≤ α

m .

Discussion
Parameter-free modeling. VOXPL uses the basic bootstrap,
a non-parametric method, for handling arbitrary estimates of
responses from an unknown distribution of crowd responses.
The bootstrap trades the efficiencies gained by exact and/or
parametric methods (such as the Gaussian distribution) for
extra flexibility and robustness. This flexibility allows pro-
grammers to supply arbitrary combinations of arbitrary statis-
tics. VOXPL produces estimates and confidence intervals
numerically, rendering analytical solutions unnecessary.

Although they do not have the statistical power of exact mod-
els, in practice, non-parametric methods are often quite effi-
cient in terms of sample size. Furthermore, their computational
requirements are modest by modern standards. The bulk of
VOXPL’s computation time is spent in bootstrapping code. For
a typical estimate, VOXPL will recompute a statistic hundreds
of times, which can usually be performed in microseconds
on a modern computer. Note that VOXPL’s throughput is
dominated by human latency, so bootstrap costs are negligible.

Non-parametric methods are also more robust to model devia-
tions. For instance, many otherwise-normal distributions are
constrained by floor or ceiling effects (such as estimates of
calories, which cannot be less than zero), which have impor-
tant implications for estimates. Non-parametric procedures
such as the bootstrap use empirical confidence bounds and are
therefore less sensitive to asymmetry.

While the bootstrap is not guaranteed to produce a good es-
timate for every statistic, where exact solutions are known
(e.g., for the Gaussian and other common distributions), the
bootstrap’s approximation error is known to be small (some-
times smaller than standard approximations) and estimates
often converge as sample size increases [7, 14, 13].

Estimators and the breakdown point. Producing accurate
estimates from noisy data is not a new problem. Practicing
scientists commonly remove outliers from data by hand [37,
Chapter 1.3.5.17]. This procedure is not feasible in the
completely-automated scenario targeted by VOXPL. Nonethe-
less, the combination of the basic bootstrap and robust estima-
tors means that VOXPL often produces good estimates in a
wide variety of situations without user intervention.

The default estimator for VOXPL is the L1 median, which
estimates a distribution’s central tendency. The L1 median is a
generalization of the ordinary median to more than one dimen-
sion. The Evaluation section demonstrates that the L1 median
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Figure 4. These plots show how many workers are required to ensure that a given fraction of all tasks meet quality constraints for the calorie counting
application (the y-axis is log scale). The right choice of sample size depends both on worker capabilities and the requested constraints, making a priori
sample sizes either inefficient or ineffective. (a) shows the number of workers required for five different confidence level settings with the confidence
interval fixed at 100 calories. At the 0.95 level, most tasks require around 100 workers. (b) shows the number of workers required for five different
confidence interval width settings with the confidence level fixed at 0.95. Higher confidence settings or tighter confidence widths generally require more
workers.

works well in both univariate and multivariate situations, as
well as in outlier-prone scenarios. Here, we justify from a
theoretical standpoint why the L1 median is a good estimate
when outliers are expected.

Informally, the breakdown point of an estimator is the pro-
portion of data which must be moved to infinity so that the
estimate will do the same [2]. While the arithmetic mean is
widely used to capture central tendencies of distributions, it
is exquisitely sensitive to outliers. This sensitivity is reflected
in its breakdown point, 1/n, meaning that a single large out-
lier is sufficient for the mean to fail to accurately estimate a
distribution’s central tendency. By contrast, both the ordinary
median and the L1 median—the point that minimizes the sum
of the L2 norms between itself and every other point—has a
breakdown point of 1/2, which is the theoretical maximum
breakdown point.

EVALUATION
In this section, we evaluate VOXPL on a set of applications
designed to explore its expressiveness, efficiency, and accuracy.
Since we do not empirically evaluate ease of use, we note
anecdotally that we find VOXPL easy to use. Many of the
programs are concise (e.g., the calorie counter function is 10
lines of code) and took on the order of 10-20 minutes to write.
The workflow consists of (1) adding a line to a project’s build
file to add a dependency to the VOXPL library, (2) writing an
import statement to use the library in user code, (3) providing
MTurk credentials, (4) defining a VOXPL function, and then
(5) calling the function.

Photographic Calorie Counter
We wrote an application in VOXPL that uses the crowd to esti-
mate the caloric content of a plate of food from a photograph.
This application lets us explore VOXPL’s efficiency-accuracy

tradeoff across a range of confidence threshold and confidence
interval width settings.

We perform this evaluation using a data set of 208 school
lunch photos from elementary schools. For each photo, we
have ground truth nutritional data that we obtained from school
lunch menus, which public schools are required to report by
Federal law. A sample lunch is shown in Figure 6. Each photo
also includes a US quarter for scale.

Our evaluation proceeds as follows. First, we obtained large
sample sizes for each plate (200 estimates) by having VOXPL
post the estimation tasks on MTurk, but with a fixed sample
size, rather than relying on VOXPL’s quality control mech-
anisms. The accuracy of individual responses varies widely:
the mean absolute error (MAE) for this dataset ranged from
1.56 to 305.61 calories for individual plates. Next, we run
VOXPL with a variety of settings over these samples as if they
were generated live by workers.

We conducted two different simulation experiments as de-
scribed above, in both cases costs were generally linear with
the number of workers ($0.06 per worker). First, we ran
VOXPL with a fixed confidence interval width of 100 calories,
varying the confidence parameter between 0.55 and 0.95, and
measuring the number of responses required to satisfy user
constraints (Figure 4(a)). When we varied confidence level,
VOXPL needed an average of 111 responses for the highest
confidence level (0.95) versus 15 for the lowest level (0.55).

Next, we ran VOXPL with a fixed confidence level (0.95),
varying confidence interval widths between 100 and 500, and
measured the number of responses required to satisfy user
constraints (Figure 4(b)). Similarly, when we varied the confi-
dence interval, VOXPL needed an average of 107 responses
for the tightest confidence interval (width = 100) versus 9 for
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def whereIsTheNose(imgUrl: String) = MultiEstimate (
budget = 6.25,
title = "Where is this person’s nose?",
text = "Locate the center of the tip of this " +

"person’s nose, click on it with your " +
"mouse, and press the submit button.",

image_url = imgUrl,
dimensions = Array(
Dim(id = ‘x,
confidence_interval = Symmetric(20)),

Dim(id = ‘y,
confidence_interval = Symmetric(20))

),
layout = layout,
estimator = Mean
)

Figure 5. The function definition for a program that locates facial fea-
tures (here, noses) from image URLs. The layout variable implements
UI controls using Javascript and CSS to style the form automatically
generated by VOXPL on MTurk. Dim fields describe constraints for di-
mensions x and y.

the widest (width = 500). These experiments demonstrate that
VOXPL automatically performs the appropriate cost-accuracy
tradeoff. VOXPL automatically recruits more workers as con-
straints become more stringent.

The state of the art in machine learning-based caloric estima-
tion is Google’s IM2CALORIES [36]. IM2CALORIES does
not rely on the crowd. Instead, it combines GPS location, vi-
sion, and information retrieval techniques in order to do calorie
estimates. It first takes a GPS reading and then finds a likely
set of menus from Google’s database by searching by location.
Next, it uses this information to find likely food matches from
the image using hints from likely menus. Finally, likely foods
are looked up in a nutritional database, portions estimated, and
calories summed. By contrast, VOXPL uses only the food
images themselves and queries only the crowd, without any
additional information.

IM2CALORIES is not publicly available, so a direct compari-
son is not possible; however, VOXPL appears to produce better
estimates. The IM2CALORIES paper reports that their best per-
forming algorithm has a mean absolute error (MAE) of 152.95
kcal with a standard error (SE) of 15.61 kcal. VOXPL’s best
performing setting (1−α = 0.95; confidence interval width
= 100) has a MAE of 103.08 kcal with an SE of 6.00.

This result is somewhat surprising given the amount of infor-
mation IM2CALORIES has available versus VOXPL’s crowd,
which only has access to images. VOXPL’s calorie counter
was trivial to write; the core function itself is only 10 lines
of code, with the entire VOXPL program (including support
code) consisting of 130 lines of code.

Facial Feature Locator
Our next application estimates the locations of facial fea-
tures [19]. Finding facial features (e.g., the tip of the nose) is
a component of face pose estimation, and important task in
face recognition pipelines. Crowdsourcing is often utilized in
machine learning specifically to build “ground truth” datasets

Figure 6. A sample of one of the 208 school lunch images we use to eval-
uate VOXPL’s calorie-counting application (for which we have ground
truth). Each picture is accompanied by a US quarter to provide a sense
of scale.

for this kind of task; ensuring the high quality of training data
is often important for the quality of the resulting model.

The application we built in VOXPL identifies the tip of a
person’s nose. This “nose finder” application asks workers to
locate the “center of the tip of the nose” in 15 images of the
faces of both people and animals taken from a Google Image
search. Note that estimating the location of a nose is not a
single estimation task; it is actually a joint estimation task
since nose location combines both x and y information. The
VOXPL code for this task is shown in Figure 5. Confidence
intervals were set at ±20 pixels, a tight bound.

Figure 1 presents sample photos and user responses with the
95% confidence region drawn as ellipses. In all 15 images,
noses were correctly identified. As Figure 1(a) illustrates,
confidence regions can be quite tight.

In response to the tightness of the requested confidence re-
gions, VOXPL’s quality control algorithm recruited a fairly
large number of workers. VOXPL scheduled 1,356 tasks at an
average cost of $0.06 per task; the average cost to identify the
nose per image was $5.42. In all but two cases, the resulting
confidence interval was tighter than ±20 pixels (average x and
y width of ±17.01 and ±17.47 pixels, respectively) with high,
Bonferroni-adjusted confidence levels (average 98.7%). The
two cases with looser bounds (x: ±35.12, y: ±36.6 pixels and
x: ±40.3, y: ±43.96 pixels) exceeded the maximum budget
of $6.25. One latter case is the camel image shown in Fig-
ure 1(b); workers correctly identified its nose, but had some
difficulty pinpointing the tip.

Our results demonstrate that VOXPL can be used to quickly
collect high-quality ground truth data from images. This task
took less than 50 minutes to run for 15 images, all of which
were scheduled in parallel; the underlying runtime is capable
of scaling to thousands of simultaneous tasks. We believe that
this result compares favorably to the traditional method of
generating ground-truth for such datasets: (1) either utilizing
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Figure 7. Observed confidence intervals at the 95% confidence level
when using the mean or the median for estimating the mass of a cow.
The shaded regions represent confidence intervals while the red line is
the true value. When a user requests a tight constraint (x axis), VOXPL
ensures that the resulting confidence interval is indeed tight (y axis). Re-
sults are the average of thirty simulations at each interval constraint.

workers to build them using ad hoc quality-control mecha-
nisms, or (2) employing graduate students under a similar
regime. VOXPL can build these datasets faster and more reli-
ably (with user-defined error bounds); if desired, VOXPL can
let programmers trade off looser error bounds for lower cost.

Estimating Mass
Our next application estimates the mass of an object using the
crowd, automating Galton’s canonical “wisdom of the crowd”
study. Recall that Galton gathered the responses of participants
in an ox-weighing contest; the median of the crowd’s guesses
was accurate within 0.8%. To Galton, this result suggested
that expert knowledge could be acquired by aggregating the
estimates of a large number of non-experts. Statisticians have
since debated the cattle expertise of participants in that era. In
his defense, Galton aptly observed that it was unlikely that all
800 participants were experts. Since their occupations were
not recorded, the debate remains unsettled.

In August 2015, in a segment featuring New Yorker columnist
James Surowiecki, the author of the book The Wisdom of
Crowds, the National Public Radio program Planet Money
sought to replicate the study themselves [24]. In contrast to
the fair-goer of 1907, the typical Planet Money listener’s life is
likely far less agrarian: more than 80% reported that they had
no special expertise in cattle. The show posted several photos
of a cow, “Penelope,” on their website and issued a call for
participation. 17,184 people responded, with guesses ranging
from 1 lb to 14,555 lbs. Penelope’s true weight, obtained with
a truck pull scale, was 1,355 lbs. The median of the Planet
Money crowd, 1,245 lbs, was accurate to within 8.1%.

Planet Money supplied us with their data. Because of its size,
the dataset allows us to explore a wide range of VOXPL confi-
dence settings. Responses were provided by unpaid volunteers
with little incentive to answer correctly, highlighting the value
of quality control.

Figure 8. A difficult task for identifying objects in an image: a pic-
ture from the “Where’s Waldo?” children’s game. In every case, crowd
workers found Waldo, although in some cases like the one shown here,
the confidence region is large because a number of workers were fooled
by the Waldo-lookalike on the left. In this case, VOXPL was able to pro-
vide a correct estimate, although the resulting confidence bounds did not
satisfy the (tight) target constraint of ±20 pixels.

We simulate Mechanical Turk responses by randomly sam-
pling from the Planet Money data, without replacement. We
compute equivalent MTurk workers costs (at a default rate of
$7.25/hr, the U.S. Federal minimum wage) to explore cost-
accuracy tradeoffs. Experiments explore four 95% confidence
interval widths: ±500, ±200, ±100, and ±50. Each setting
is repeated 30 times, and the results are averaged. While
VOXPL’s default estimator is the L1 median, we also run these
experiments with the arithmetic mean.

VOXPL achieves an effective cost-quality tradeoff for a vari-
ety of confidence interval widths. In all cases, estimates are
remarkably good, especially given the wide variation in re-
sponses (see Figure 7). At its loosest confidence interval width
(±500), estimates using the mean had a mean absolute error
(MAE) of 126.7 lbs and cost $0.72 on average; estimates using
the median had a MAE of 118.2 lbs and cost $2.16 on average.
At its tightest confidence interval width (±50), estimates using
the mean had a MAE of 71.0 lbs and cost $121.34 on average;
estimates using the median had a MAE of 110.9 lbs and cost
$89.09 on average. These results show that the choice of esti-
mator can have a significant impact on cost depending on the
stringency of the quality constraints; here, the median is more
expensive for loose quality constraints, but cheaper for tighter
constraints. However, this result depends on the distribution
of responses, so this relationship is not predictable in advance.

Robust Location of Objects in an Image
Our final application asks workers to play the “Where’s
Waldo?” children’s game (see Figure 8). Waldo is a char-
acter with a distinct set of features: a knit cap, eyeglasses, and
a red and white striped shirt. The task is to locate Waldo in
an image. The game can be surprisingly challenging because
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images are often quite large, Waldo is usually lost among a
sea of other people, and some of those other people are delib-
erately made to resemble him. While such a task is technically
composed of two tasks—first locating characters and then
labeling Waldo—this construction wastes resources because
we do not need the locations of other characters. Instead, we
ask workers to both find and label Waldo in a single step. In
our experiment, we set a tight target constraint of ±20 pixels
(resulting in a circle around the point) and a confidence level
of 95%; the maximum budget was $6.25.

As anticipated, workers performed poorly on this task; a num-
ber of workers were fooled by Waldo lookalikes. Nonetheless,
VOXPL correctly located the real Waldo in every case. For all
of the tasks, the resulting confidence regions are wider than
the programmer’s target constraint. All tasks cost $5.76. This
result demonstrates that, despite the inherent difficulty of some
tasks, VOXPL can trade off cost and quality to deliver the best
estimate for the money while keeping the task under budget.

RELATED WORK
Our discussion first focuses on the most closely related work,
AUTOMAN, since VOXPL builds on and significantly extends
that system. We then discuss other related work, focusing
on two of the key challenges identified by a recent position
paper by Kittur et al. [25]: (1) how to ensure high quality,
and (2) how to support complex workflows via programming
frameworks. Finally, we discuss domain-specific work relating
to the applications we use in our evaluation.

VOXPL modifications to AUTOMAN
AUTOMAN is a modular crowdprogramming framework with
integrated automatic scheduling, payment, and quality control
for any given multiple-choice question and confidence level [4,
5]. VOXPL generalizes and subsumes the AUTOMAN crowd-
programming framework, leveraging its automatic scheduling
and pricing algorithms. VOXPL significantly extends AU-
TOMAN with a novel combinator logic and estimation pro-
cedure. The combinator logic guarantees that all VOXPL
programs are statistically valid. The estimation procedure
ensures that estimates meet quality constraints.

VOXPL estimation functions produce random variables rep-
resenting arbitrary, empirical distributions. The L1 median,
confidence intervals, and the like are inferences about those
distributions. When VOXPL estimates are composed (e.g, by
adding them), the runtime transparently infers properties of
the composed empirical distribution. AUTOMAN functions,
by contrast, are not true random variables, and cannot be com-
posed. Changing AUTOMAN to support VOXPL required a
wholesale replacement of AUTOMAN’s core algorithms, more
than 5,000 lines of terse Scala code and one person-year of
engineering effort. We describe the key modifications in the
following sections.

Incorporating distributions for composability. The return
type for AUTOMAN functions, a Future[Answer], does not
suffice for VOXPL. Critically, this return type does not repre-
sent a distribution. Answers are the result of hidden aggrega-
tion operations. Using a single aggregated value as a response

makes it impossible to compose the outcomes of two ques-
tions because the bootstrap requires access to both component
distributions in order to compute confidence intervals.

To address this, we replaced AUTOMAN’s Future[Answer]
with an Outcome. An Outcome is essentially a probability
monad, a datatype that represents probability distributions
and ensures that all operations faithfully observe the laws
of probability [41]. In addition, we hid concurrency-related
Future datatypes from users as they complicate the use of
the DSL, although we still rely on them extensively inside the
runtime itself to manage task latencies.

Multiple comparisons. The core statistical procedure em-
ployed by AUTOMAN is subject to early termination bias.
AUTOMAN optimistically schedules the minimum number
of tasks that satisfy the user’s constraints, but it schedules
more when larger samples are needed. AUTOMAN should
also update its stopping criteria, because incremental sampling
implies a greater probability of stopping early by random
chance. This phenomenon is known as the multiple compar-
isons problem. We incorporated the Bonferroni correction
(see Correcting for Multiple Comparisons) into AUTOMAN’s
scheduler to control this probability.

Moving checking to the compiler. AUTOMAN relied on ex-
ceptions to handle events like exceeding the budget. Scala,
AUTOMAN’s host language, does not support checked excep-
tions, which means that failing to supply exception handlers is
not a compile-time error. Unfortunately, this choice makes it
easy for programmers to forget to handle these cases, leading
to runtime failures. We ourselves found this to be a significant
pain point while programming VOXPL tasks.

To address this problem, we completely replaced AUTOMAN’s
exception mechanism. Users now extract Answer values from
Outcome distributions using functional pattern matching. All
Answer subtypes (for estimation, etc.) are sealed, which
means that they cannot be extended by the user [1]. sealed
return types ensure that the compiler is aware of all possible
VOXPL estimation return values. As a result, VOXPL lever-
ages the compiler’s exhaustiveness check to ensure that users
handle exceptional conditions. Failing to so so produces a
compilation error.

Other High-Level Programming Frameworks
Crowdsourcing program logic is easily obscured by the con-
cerns introduced by mixing human and digital computation.
TURKIT is an scripting system designed to make it easier to
manage Mechanical Turk tasks [30]. CROWDFORGE provides
language primitives for partitioning, mapping, and reducing
tasks to form complex workflows [26]. CROWDDB and QURK
integrate crowd calls with database queries [15, 33]. As with
the quality control approaches mentioned above, these sys-
tems are limited to labeling or lack statistical guarantees. By
contrast, VOXPL produces estimates with error bounds.

Quality Control
Labeling. Crowdsourcing has led to a resurgence in interest
in quality control algorithms, but to date, research has focused
primarily on producing accurate labels. Early on, researchers
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noted that “inter-annotator agreement”, also known as worker
consensus, could improve the quality of crowdsourced labels.
Many of the early approaches employ methods like majority
vote that do not provide explicit quality guarantees [48, 43, 21,
34, 15, 40]. Later work takes a more statistical approach: many
systems model latent variables like worker skill, worker speed,
or task difficulty, or exploit correlations in the labels of similar
inputs to predict accurate labels [9, 35, 29, 8, 10]. Several
systems specifically address adversaries who may “game” the
system by changing their behavior, treating the problem as
a form of statistical noise rejection [4, 31, 27]. All of these
approaches are designed with labeling in mind and do not
provide quality guarantees for estimates.

Domain-specific estimation tasks. A number of systems ad-
dress quality for specific instances of estimation problems. An
algorithm based on the QURK platform provides a form of
quality control for counting tasks [32]. Baba and Kashima
use the crowd to bootstrap quality control for arbitrary tasks
by asking the crowd itself for quality annotations [3]. While
these systems do not provide quality guarantees, two alter-
native approaches do. Models borrowed from biology used
to count animals can be repurposed to provide counts with
confidence bounds [23]. The CROWD-MEDIAN algorithm, a
nonparametric algorithm, can be used to find, e.g., “most rep-
resentative” images, but is limited to computing centroids [17].
The Zooniverse suite of citizen science projects ask users to
draw bounding boxes or mark locations on images, but they
use domain-specific heuristics to handle quality.2 VOXPL
is designed to handle estimation generally, and can compute
arbitrary statistics with quality guarantees.

Specific Applications
Calorie counting from images. PLATEMATE is an early ap-
proach that uses the crowd to analyze images [38]. While
PLATEMATE can use the crowd to specifically estimate calo-
ries, it uses a fixed, ad hoc voting scheme that solicits five
responses and then rejects outliers, returning the mean of the
remaining responses. Machine learning based approaches in-
clude SRI’s FIVR and Google’s IM2CALORIES [39, 36].
FIVR requires multiple images, a comprehensive food
database, a color calibration step, and speech annotations,
and treats the problem as a form of volume estimation [39].
Google’s IM2CALORIES represents the current state of the
art, estimating calories from images by correlating them with
items on restaurant menus [36].

Face recognition. EIGENFACES was the first practical auto-
mated face recoginition system, but cannot recognize faces
when pose, illumation, and facial expressions are changed [47].
The current state of the art is Facebook’s DEEPFACE system,
which achieves near-human accuracy for face verification tasks
(i.e., determining whether a photo is of a given person) [45].
Nonetheless, DEEPFACE needs a large training set (millions
of labled images), and requires prior face detection. VOXPL
lets programmers directly harness people’s superior abilities
at both face detection and verification [42].

2Private correspondence with the Zooniverse Principal Investigator,
Chris Lintott.

CONCLUSION
Estimation is a natural task for crowd-powered systems. This
paper presents VOXPL, a system that automatically gener-
ates statistically valid estimates from the crowd at low cost.
VOXPL’s declarative domain-specific language lets program-
mers concisely write applications based on these estimates.
We show that VOXPL’s quality control algorithms let pro-
grammers trade cost for accuracy, automatically generating
the right statistical procedure to return crowd-generated results
of the desired quality. We believe that VOXPL significantly
extends the reach of crowdsourcing to encompass “wisdom
of the crowd” estimation tasks, and that it has the potential to
enable a new class of crowdsourcing-based applications.
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