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Judges, doctors, and managers are among those decision
makers whomust often choose a course of action under lim-
ited time, with limited knowledge, andwithout the aid of a
computer. Because data-driven methods typically outper-
form unaided judgments, resource-constrained practition-
ers can benefit from simple, statistically derived rules that
can be applied mentally. In this work, we formalize long-
standing observations about the efficacy of improper linear
models to construct accurate yet easily applied rules. To
test the performance of this approach, we conduct a large-
scale evaluation in 22 domains and focus in depth on one:
judicial decisions to release or detain defendants while they
await trial. In these domains, we find that simple rules rival
the accuracy of complex prediction models that base deci-
sions on considerably more information. Further, comparing
to unaided judicial decisions, we find that simple rules sub-
stantially outperform the human experts. To conclude, we
present an analytical framework that sheds light on why
simple rules perform as well as they do.
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1 | INTRODUCTION
In field settings, decision makers often choose a course of action based on experience and intuition rather than on
statistical analysis (Klein, 2017). This includes doctors classifying patients based on their symptoms (McDonald, 1996),
judges setting bail amounts (Dhami, 2003) ormaking parole decisions (Danziger et al., 2011), andmanagers determining
which ventures will succeed (Åstebro and Elhedhli, 2006) or which customers to target (Wübben andWangenheim,
2008). Despite the prevalence of this approach, a large body of work shows that in many domains intuitive inferences
are inferior to those based on statistical models (Meehl, 1954; Dawes, 1979; Dawes et al., 1989; Camerer and Johnson,
1997; Tetlock, 2005; Kleinberg et al., 2015, 2017).

In this work, we generalize from research on improper linearmodels (Einhorn andHogarth, 1975; Green, 1977;
Dawes, 1979; Gigerenzer and Goldstein, 1996; Waller and Jones, 2011) to suggest a straightforward method for
constructing simple yet accurate decision rules that experts can applymentally. This select-regress-and-roundmethod
results in rules that are fast, frugal, and clear: fast in that decisions can bemade quickly in one’s mind, without the aid
of a computer; frugal in that they require very little information to reach a decision; and clear in that they expose the
grounds onwhich classifications aremade.

Decision rules satisfying these criteria havemany benefits. Fast rules that can be appliedmentally reduce trans-
action costs, encouraging persistent use. Inmedicine, frugal rules require fewer tests, which saves time, money, and,
in the case of triage situations, lives (Marewski and Gigerenzer, 2012). Frugal decision rules incorporating predictors
that are broadly related to outcomes of interest are well suited for settings in which amodel highly customized for one
population may not generalize to other populations (Wyatt and Altman, 1995). The clarity of simple rules provides
insight into how systems work and exposes wheremodels may be improved (Gleicher, 2016; Sull and Eisenhardt, 2015),
whichmay encourage adoption of such tools in clinical settings (Wyatt and Altman, 1995). Clarity can even become a
legal requirement when society demands to know how algorithmic decisions are beingmade (Goodman and Flaxman,
2016; Corbett-Davies et al., 2017).

After describing the select-regress-and-round method, we evaluate its efficacy on 21 datasets from the UCI
Machine Learning repository, and show that in many cases simple rules are competitive with state-of-the-art machine
learning algorithms. To illustrate in detail the value of simple rules, we present a case study of judicial decisions for
pretrial release. Based on an analysis of over 100,000 cases, we show that simple rules substantially improve upon the
efficiency and equity of unaided judicial decisions. In particular, we estimate that judges can detain one-third fewer
defendants while simultaneously increasing the number that appear at their court dates.1 In the judicial context, as
in many policy settings, it is statistically challenging to evaluate decision rules based solely on historical data. The key
difficulty is that one cannot observe what would have happened under an alternative course of action. What would
have happened, for example, if one released a defendant who in reality was detained? We address this issue by first
estimating the relevant counterfactual outcomes, and then assessing the sensitivity of our estimates to unobserved
confounding, generalizing the technique of Rosenbaum and Rubin (1983a).

Our results add to a growing literature on interpretable machine learning. In addition to methods for better un-
derstanding complex machine learning models and data structures (Kim et al., 2015; Ribeiro et al., 2016), several
methods have been introduced to construct interpretable decision rules, similar to the simple decision rules we discuss
here. For example, Van Belle et al. (2012) use convex optimization to build interval coded scoring models for binary
outcomes. More general methods for constructing interpretable decision rules have been recently proposed, including
supersparse linear integer models (SLIM) (Ustun and Rudin, 2016), Bayesian rule lists (Wang and Rudin, 2015), and
interpretable decision sets (Lakkaraju et al., 2016). Thesemethods all produce rules that are easy to interpret and to
1Kleinberg et al. (2017) recently and independently proposed usingmachine learningmodels to assist judicial decisions, but they do not consider simple rules.
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apply but the methods differ considerably on the ease of rule creation. As an important practical consideration, the
methodwe investigate here can be carried out by a practitioner without extensive training in statistics, using popular
open-source software—though it bears emphasis that appropriate application of all statistical methods requires both
domain knowledge and familiarity with the relevant data.

2 | SELECT-REGRESS-AND-ROUND: A SIMPLE
METHOD FOR CREATING SIMPLE RULES

Webegin by presenting a simple method—which we call select-regress-and-round—for constructing simple decision rules.
This procedure generalizes ideas that appear throughout the judgment and decision-making literature on improper
linear scoring rules, and formalizes heuristics used by practitioners in creating decision aids.

The ruleswe construct are designed to aid classification or ranking decisions by assigning each item in consideration
a score z , computed as a linear combination of a subset S of the item features:

z =
∑
j ∈S

wj xj ,

where theweightswj are integers. In the caseswe consider, the features themselves are typically 0-1 indicator variables
(indicating, for example, whether a person is male, or whether an individual is 26–30 years old), and so the rule reduces
to a weighted checklist, in which one simply sums up the (integer) weights of the applicable attributes.2 Often, one
seeks tomake dichotomous decisions (e.g., whether to detain or to release an individual pending trial), which amounts to
setting a threshold and then taking a particular course of action if and only if the score is above that threshold.

This class of rules has two natural dimensions of complexity: the number of features included in the subset S ,
and themagnitude of the weights. Given integers k ≥ 1 andM ≥ 1, we apply the following three-step procedure to
construct rules with at most k features and integer weights bounded byM (i.e., |S | ≤ k and −M ≤ wj ≤ M ).

1. Select. From the full set of features, select k features via forward stepwise selection. This is done by iteratively
adding the feature that minimizes AIC. For fixed k , we note that standard selectionmetrics (e.g., AIC or BIC) are
theoretically guaranteed to yield the same set of features.

2. Regress. Using only these k selected features, train an L1-regularized (lasso) logistic regressionmodel to the data,
which yields (real-valued) fitted coefficients β1, . . . , βk .

3. Round. Rescale the coefficients to be in the range [−M ,M ], and then round the rescaled coefficients to the nearest
integer. Specifically, set

wj = Round
(

Mβj

maxi |βi |
)
.

This select-regress-and-roundmethod for rule construction extends research on unit-weighted linear models by
incorporating feature selection and by adoptingmore general integer weights to generate a richer family of rules, the
accuracy of which we examine in the next section. In practice, we recommend that developers of such rules apply the
2It is possible to directly apply select-regress-and-round to continuous features but, in the spirit of simplicity and interpretability, we recommend discretizing
continuous covariates, using, for example, three equal-sized bins, as proposed in Gelman and Park (2009). But in practice, as always, domain knowledge
and technical considerations play an important role in determining appropriate transformations or discretization schemes. For example, rather than simply
partitioning an age covariate into threebins, onemight use10-year buckets. Similarly, onemight collapse categorical featureswith several levels into a smaller
number of more semantically meaningful groups.
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procedure for a range of small values of k andM that are appropriate to their domain, and then pick the values that
perform best on context-specificmetrics, balancing simplicity with performance, an approachwe illustrate below.

We note that rules constructed in this way may have fewer than k features, since the lasso regression in Step
2 may result in coefficients that are identically zero, and rescaling and rounding coefficients in Step 3 may zero-out
additional terms. For Step 2, the regularization parameter, λ, is chosen via cross-validation.3 In our applications,
following Friedman et al. (2010), we explore a regularization path with 1,000 values of λ spaced evenly on the log-scale
in the range (λmin, λmax), where λmin = 10−4 and λmax is selected as the minimum value such that all coefficients are
regularized to zero.

3 | EVALUATING THE EFFICACY OF SIMPLE RULES
Weapply the select-regress-and-round procedure to 21 publicly available datasets to examine the tradeoff between
rule complexity and performance. These datasets all come from the UCIMachine Learning Repository (see Table 1),
andwere selected according to four criteria: (1) the dataset involves binary classification (as opposed to a regression
problem), where we set themajority class as the target of prediction for those datasets whose outcome variable takes
more than two values; (2) the dataset is provided in a standard and complete form; (3) the dataset involves more than
10 (binarized) features; and (4) the classification problem is one that a human could plausibly learn to solve with the
given features. For example, we included a dataset in which the task was to determine whether cells weremalignant or
benign based on various biological attributes of the cells, but we excluded image recognition tasks in which the features
were represented as pixel values. This fourth requirement limits the scope of our analysis and conclusions to domains in
which human decisionmakers typically act without the aid of a computer.

3.1 | Benchmarking to complex predictionmodels
We benchmark the performance of our simple rules against three standard statistical models: logistic regression,
L1-regularized logistic regression, and random forest. Random forest, in particular, is considered to be one of the best
off-the-shelf classification algorithms in machine learning (Fernández-Delgado et al., 2014; Kleinberg et al., 2017).
These models were fit in R with the glm, glmnet, and randomForest packages, respectively. For the L1-regularized
logistic regressionmodels, the cv.glmnetmethodwas used to determine the best value of the regularization parameter
λ with nested 10-fold cross-validation and 1,000 values of λ. We used 1,000 trees for the random forest models.

Across the 21 UCI datasets, variables are documented as categorical (discrete and unordered), ordinal (discrete
and ordered), or continuous. For our simple rules, we represent discrete covariates—both categorical and ordinal—as a
series of binary indicator variables, with one indicator per category. In particular, for simplicity, we ignore the category
ranking in ordinal variables. Further, all continuous features are discretized into three approximately equal-sized bins
representing (categorical) low, medium, and high values of the feature, following Gelman and Park (2009). For the
three complexmodels, we include the above feature representations, as well as the original (non-discretized) values of
continuous variables. Also, for ordinal variables—in addition to their unordered categorical representation—we include
a feature representation that preserves the order of categories.4

3Unlike λ, the parameters k and M cannot be selected via an automated procedure unless one formally quantifies the tradeoff between performance and
simplicity, since both performance and complexity increase with larger values of k andM. However, in practice, as we show below, onemight achieve approxi-
mately the same performance as a traditional logistic regressionmodel with relatively small values of k andM , meaning the tradeoff may be negligible.
4As is common, the categories of an ordinal variable are represented as sequential integers, with our complex models fitting orthogonal polynomials to these
integer values (Chambers et al., 1992).
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TABLE 1 Summary of UCI datasets. For each domain, we report: the name of the dataset; the number of rows and
features (columns excluding the class label) in the original dataset; the number of complete rowswith nomissing data;
the number of continuous features, as well as the number of features after discretizing continuous variables and
expanding categorical variables to binary indicators; and the proportion of instances in themost common class
(proportionmajority). The context of each domain is presented in detail in Appendix A.

Domain Instances Features Complete Continuous Binarized Proportion
instances features features majority

1. adult 32,561 14 30,162 4 96 25
2. annealing 798 38 798 7 54 76
3. audiology-std 200 41 190 0 55 24
4. bank 41,188 20 41,188 9 62 11
5. bankruptcy 250 6 250 0 13 43
6. car 1,728 6 1,728 0 16 70
7. chess-krvk 28,056 6 28,056 0 35 10
8. chess-krvkp 3,196 36 3,196 0 37 52
9. congress-voting 435 16 232 0 17 53
10. contrac 1,473 9 1,473 2 20 43
11. credit-approval 690 15 653 6 44 45
12. ctg 2,126 38 2,126 33 67 78
13. cylinder-bands 541 39 279 19 65 65
14. dermatology 366 34 358 34 69 31
15. german_credit 1,000 20 1,000 7 56 70
16. heart-cleveland 303 13 299 6 26 46
17. ilpd 583 10 579 9 20 72
18. mammo 961 5 830 1 18 49
19. mushroom 8,124 22 5,644 0 76 38
20. wine 178 13 178 13 27 40
21. wine_qual 6,497 12 6,468 11 24 63

On each of the UCI datasets we analyze here, we construct a family of simple rules having k ∈ {1, . . . , 10} features,
with feature weights bounded byM ∈ {1, 2, 3}. We count the number of features k prior to binarization. For example, a
categorical covariate with five possible values—and hence converted to five binary variables—counts as one of the k
features in the simple rule, not five. The head-to-head comparison with complexmodels provides a difficult test for the
simple rules in part because the simple rules can only base their predictions on 1 to 10 features. The complex models, in
contrast, can train and predict with all the features in a domain, which number between 5 and 41with amean of 20.5
Weprovide the complexmodels with an additional advantage over the simple rules by including continuous and ordinal
features in their native representation as well as their unordered, discretized versions. In contrast, the simple rules only
include the unordered, discretized versions.

Figure 1 showsmodel performance, measured in terms of mean cross-validated AUC (i.e., area under the receiver
operating characteristic curve) across the 21 datasets, as a function of model size and coefficient range. The AUC for
5In theory, the out-of-sample performance of logistic regression could be improved by incorporating a variable selection step. However, we find no qualitative
difference in performance when adding a variable selection step in our specific case.
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F IGURE 1 Performance of simple and complex rules. Performance is measured in terms of mean cross-validated
AUC over all 21 datasets. The black line represents simplemodels with no rounding, and the green, blue, and red lines
represent simple models rounding coefficients to [−3, 3], [−2, 2], and [−1, 1], respectively. The simple models can predict
with up to 10 features. The number of “all” features used by random forest, lasso, and logistic regression varied by
domain, with an average of 20.

eachmodel on each dataset is computed via 10-fold cross-validation. We find that simple rules with only five features
and integer coefficients between -3 and 3 perform on par with logistic regression and L1-regularized logistic regression
trained on the full set of features. For 1 to 10 features, the [-3, 3] model (green line) differs from the unrounded lasso
model (black line) by less than 1 percentage point. The performance of the random forest model—which is designed to
capture non-linear structure—is somewhat better: trained on all features, random forest achieves amean AUC of 92%;
themean AUC is 87% for simple rules with at most five features and integer coefficients between -3 and 3.

In Appendix B.2, we examine the performance of select-regress-and-round for each of the 21UCI datasets sep-
arately. As Figures B2 and B3 demonstrate, across almost all datasets, simple rules have comparable AUC to logistic
regression (with or without regularization), and have slightly lower AUC than a random forest model. As these results
indicate, complex predictionmethods certainly have their advantages, but the gap in performance between simple rules
and fully optimized predictionmethods is not as large as onemight have thought.

3.2 | Benchmarking to integer programming
The simple rules we construct take the form of a linear scoring rule with integer weights. To produce such rules, mixed-
integer programming is a natural alternative to our select-regress-and-roundmethod, and supersparse linear integer
models—abbreviated SLIM (Ustun and Rudin, 2016)—is the leading instantiation of that approach, to which we now
compare. Integer programming is an NP-hard problem, and so following Ustun and Rudin (2016) we set a time limit for
SLIM: a 10-minute limit is set in the original paper, but we allow up to 6 hours of computation per model. For 7 of the 21
datasets, SLIM found an integer-optimal solution within the time limit, and it returned approximate solutions in the
remaining 14 cases.

Figure 2 compares the binary classification accuracy of SLIM and select-regress-and-round on the 21 UCI datasets,
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F IGURE 2 Comparing binary classification accuracy for select-regress-and-round (SRR) and SLIM on 21UCI
datasets. Solid dots are cases in which SLIM successfully found an optimal integer solution, while the open circles are
cases in which the time limit of 6 hours was exceeded.

where each point corresponds to a dataset. Bothmethods are constrained to produce rules with at most five features
and integer coefficients between -3 and 3.6 We show 0-1 accuracy as opposed to AUC, since SLIM only produces
optimized binary decisions, forwhichAUC is not applicable. In computing 0-1 accuracy for select-regress-and-round, we
select a cut point that corresponds to approximately 0.5 on the probability scale. Accuracy is computed out-of-sample
via 10-fold cross-validation. Bothmethods for producing simple rules yield comparable results: averaged across all 21
datasets, SLIM and select-regress-and-round both achieve amean accuracy of 86%. Even in the 7 cases where SLIM
found integer-optimal solutions, performance is nearly identical to the simple select-regress-and-roundmethod.

In terms of classification accuracy, select-regress-and-round generates rules that are on par with those obtained by
solving mixed-integer programs. We note, however, two advantages of our approach. First, whereas select-regress-and-
round yields results almost instantaneously, integer programs can be computationally expensive to solve. Second, our
approach is relatively simple, both conceptually and technically, accordingly easing adoption for practitioners.

4 | CASE STUDY: PRETRIAL RELEASE DECISIONS
To illustrate the value—and challenges—of applying simple decision rules in practice, we now turn to the domain of
pretrial release determinations and present an extended case study. In the United States, defendants are typically
arraigned shortly after arrest in a court appearance where they are providedwith written notice of the charges alleged
by the prosecutor. At this time, a judge must decide whether a defendant, while awaiting trial, should be released on
one’s own recognizance (RoR), or alternatively, subject to monetary bail. In practice, if the judge rules that bail be set,
6In comparingwith SLIM,we nowdefine the number of features k to be the number of binarized variables—for both SLIM and select-regress-and-round—since
thismethodof accounting iswhat is used by SLIM. For example, while a single categorical variablewith five possible valueswould have been considered as one
feature in the previous section, each possible value is counted as a feature here, and hence including the entire categorical variable would result in a model
with five features.
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defendants often await trial in jail sincemany of them do not have the financial resources to post bail. Moreover, when
defendants are able to post bail, they often do so by contracting with a bail bondsman and in turn incur hefty fees. The
judge, however, has a legal obligation to consider takingmeasures necessary to secure the defendant’s appearance at
required court proceedings. Pretrial release decisionsmust thus balance flight risk against the high burden that bail
requirements place on defendants. In practice, judgesmay consider other factors—e.g., a defendant’s threat to public
safety or ability to afford bail—but flight risk is the only legally relevant factor for the specific jurisdiction we analyze
below.

A key statistical challenge in this setting is that one cannot directly observe the effects of hypothetical decision
rules. Unlike the class of prediction problems discussed in Section 3, outcomes in this domain are affected by a judge’s
decisions, and one only observes the outcomes that result from those decisions. For example, if a proposed policy
recommends releasing some defendants who in reality were detained by the judge, one does not observe what would
have happened had the rule been followed. This counterfactual estimation problem—also known as offline policy
evaluation (Dudík et al., 2011)—is common inmany domains. We address it here by adapting tools from causal inference
to the policy setting, including themethod of Rosenbaum and Rubin (1983a) for assessing the sensitivity of estimated
causal effects to unobserved confounding.

Our analysis is based on 165,000 adult cases involving nonviolent offenses charged by a large urban prosecutor’s
office and arraigned in criminal court between 2010 and 2015. This set was obtained by starting with a random sample
of 200,000 cases provided to us by the prosecutor’s office, and then restricting to those cases involving nonviolent
offenses and for which the records were complete and accurate. Our initial sample of 200,000 cases does not include
instances where defendants accepted a plea deal at arraignment, obviating the need for a pretrial release decision.
For each case, we have a rich set of attributes: 49 features describe characteristics of the current charges (e.g., theft,
gun-related), and 15 describe characteristics of the defendant (e.g., gender, age, prior arrests). We also observe whether
the defendant was RoR’d, andwhether the defendant failed to appear (FTA) at any of the subsequent court dates. We
note that even if bail is set, a defendantmay still fail to appear since one can post bail and thenmiss a court date. Overall,
69% of defendants are RoR’d, and 15% of RoR’d defendants fail to appear. Of the remaining 31% of defendants for
whom bail is set, 45% are eventually released and 9% fail to appear. As a result, the overall FTA rate is 13%.

In our analysis below, we randomly divide the full set of 165,000 cases into three approximately equal subsets; we
use the first fold to construct decision rules (both simple and complex), and the second and third to evaluate these rules,
as described next.

4.1 | Rule construction
We start by constructing traditional, complex statistical decision rules for balancing flight risk against the burdens of
bail. These rules serve as a benchmark for evaluating the simple rules we create below. On the first fold of the data, we
restrict to cases in which the judge RoR’d the defendant, and then fit an L1-regularized logistic (lasso) regression and
random forest, using the procedures described in Section 3.1, to estimate the likelihood an individual fails to appear at
any of their subsequent court dates. We fit thesemodels on all available information about the case and the defendant,
excluding race.7 The fittedmodels let us compute risk scores (i.e., estimated flight risk if RoR’d) for any defendant. These
risk scores can in turn be converted to a binary decision rule by selecting a threshold for releasing individuals. One
might, for example, RoR a defendant if and only if their estimated flight risk is below 20%.

To start, we construct a family of simple rules by applying select-regress-and-round as described in Section 2, using
7Weexcluded race from the presented results due to legal and policy concernswith basing decisions on protected attributes (Corbett-Davies et al., 2017). We
note, however, that including race does not significantly affect performance.



JUNG ET AL. 9
TABLE 2 A simple rule for estimating flight risk with 5 features: age, prior FTAs, major charge category, housing
instability, and defense attorney type. A defendant’s flight risk is obtained by summing the corresponding scores for the
features that apply to the case.

Feature Score Feature Score
18 ≤ age < 26 2 1 prior FTA 2
26 ≤ age < 31 1 2 prior FTAs 3
Major charge group A -2 3 ormore prior FTAs 3
Major charge group B -1 Unstable housing 3
Major charge group C 1 Defense attorney type A 2
Major charge groupD 2 Defense attorney type B -1
Major charge group E 2 Defense attorney type C -3

all available features.8 The resulting rule using 5 features with integer coefficients between -3 and 3 is presented in
Table 2. Unsurprisingly, missing court appearances in the past is a strong indicator of flight risk, and an individual’s
risk also declines with age, in line with conventional wisdom. The rule in Table 2, however, may be inappropriate for
implementation given that some features and their associated scores could be challenged as undesirable. For example,
defendants with unstable housing are rated higher risk, whichmay be statistically true but which could lead to adverse
outcomes for poorer defendants. Particularly in policy domains, feature selection often requires careful thought.

In practice, we recommend that variable selection incorporates domain expertise. For example, starting from a list
of predictive features, as in Table 2, onemight exclude problematic variables. Based on discussions with experts in our
partner prosecutor’s office, we ultimately used only two features—age and prior history of failing to appear—which are
generally viewed as acceptable considerations in pretrial decisionmaking. In this case, we can think of the “select” step
in the select-regress-and-round strategy as incorporating both human andmachine judgment. Specifically, we fit the
followingmodel:

Pr(Yi = 1) = logit−1
(
β0 + β

priors
1 H 1

i + β
priors
2 H 2

i + β
priors
3 H 3

i + β
priors
4+ H 4+

i + β age18−20A
18−20
i + · · · + β age

46−50
A46−50i

)
,

whereYi ∈ {0, 1} indicates whether the i -th defendant failed to appear;H ∗i ∈ {0, 1} indicates the defendant’s number
of prior failures to appear (exactly one, two, three, or at least four); and A∗

i
∈ {0, 1} indicates the binned age of the

defendant (18–20, 21–25, 26–30, 31–35, 36–40, 41–45, or 46–50). The parameters βpriors∗ and β age∗ are the coefficients
corresponding to each binary indicator variable. For identifiability, indicator variables for no prior FTAs and age 51-and-
older are omitted. As before, this model is fit on the subset of cases in the first fold of data for which the judge released
the defendant. Next, we rescale the age and prior FTA coefficients so that they lie in the interval [−3, 3]; specifically, we
multiply each coefficient by the constant

3

max
(
|βprior1 |, . . . , |βpriors4+ |, |β age18−20 |, . . . , |β

age
46−50

|

) .
Finally, we round the rescaled coefficients to the nearest integer.

8The exact discretization scheme used for numerical features—such as age and a defendant’s number of prior failures to appear—was determined in consulta-
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Feature Score Feature Score
18 ≤ age < 21 3 no prior FTAs 0
21 ≤ age < 31 2 1 prior FTA 2
31 ≤ age < 51 1 2 ormore prior FTAs 3
51 ≤ age 0

79% 52% 33%

85% 70% 56%

81% 61% 46%

77% 53% 34%

51+

31−50

21−30

18−20

0 1 2+

Prior FTAs

A
ge

F IGURE 3 A simple rule for estimating flight risk, where a defendant’s risk is obtained by summing the appropriate
scores for age and prior history of failing to appear (FTA). Also shown is a graphical representation of this rule, based on
setting a release threshold of 3.5. Groups to the left of the solid black line in the grid are those that would be released
under the rule. For comparison, the shading and numbers in the grid show the proportion of defendants that were
actually RoR’d by judges in each group.

Figure 3 shows the result of this procedure. For any defendant, a risk score can be computed by summing the
relevant terms in the table. These risk scores can be converted to a binary decision rule by selecting a threshold for
releasing individuals. For example, one might RoR a defendant if and only if their risk score is below 3.5; a graphical
representation of such a binary decision rule is also shown in the figure.

We note that the application of a simple rule derived from the select-regress-and-round procedure yields an integer
score for each defendant. However, in practice it may be useful to also have a probabilistic estimate of each defendant’s
risk (i.e., the probability that a defendant will fail to appear if released). A given integer score can be converted to a
probabilistic risk estimate by considering all released defendants in the training set with that score, and then computing
the empirical frequency that those defendants failed to appear. Figure 4 shows the empirical frequency of FTA for each
risk score based on the simple rule shown in Figure 3. These empirical frequencies represent probabilistic risk estimates
associated with each integer score; for example, the threshold score of 3.5 in Figure 3 corresponds to a risk estimate of
20%. In Appendix B.1, we examine the robustness of these probability estimates, and find that they are comparable to
estimates frommore complex predictionmodels.

tion with domain experts in the prosecutor’s office with which weworked.
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F IGURE 4 The empirical frequency of FTA for each risk score, based on the simple rule shown in Figure 3.

4.2 | Policy evaluation
The AUC is a useful general measure of performance, and hence themetric we consider when evaluating the 21UCI
datasets in Section 3. But in applied settings it is often necessary to directly measure the costs and benefits of any
given rule. We do that here by assessing decision rules for pretrial release on two key dimensions: (1) the proportion
of defendants who are released under the rule; and (2) the resulting proportion who fail to appear at their court
proceedings. It is straightforward to estimate the former, since one need only apply the rule to historical data to see
what actions would have been recommended.9 For example, if defendants are released if and only if their risk score is
below 3.5, 79%would be RoR’d; under this rule, bail would be required of only two-thirds as many defendants relative
to the status quo. Forecasting the proportion whowould fail to appear, however, is generally muchmore difficult. The
key problem is that for any particular defendant, we only observe the outcome (i.e., whether or not the defendant failed
to appear) conditional on the action the judge ultimately decided to take (i.e., RoR or bail). Since the action taken by the
judgemay differ from that prescribed by the decision rule, we do not always observe what would have happened under
the rule. This problem of offline policy evaluation (Dudík et al., 2011) is a specific instance of the fundamental problem of
causal inference.

To rigorously describe the estimation problem and our approach, we introduce some notation. For concreteness,
we frame ourmethodology in terms of the pretrial release example, but the ideas presented here are common tomany
policy decisions. We denote the observed set of cases by Ω = {(xi , ai , ri )}, where xi is a case, ai ∈ {RoR, bail} is the
action taken by the judge, and ri ∈ {0, 1} indicates whether the defendant failed to appear at a scheduled court date.
Wewrite ri (RoR) and ri (bail) to mean the potential outcomes: what would have happened under the two possible judicial
actions. For any policy π , our goal is to estimate the FTA rate under the policy:

V π =
1

|Ω |

∑
i

ri (π(xi )),

9In theory, implementing a decision rule could alter the equilibrium distribution of defendants. We do not consider such possible effects, and assume the
distribution of defendants is not affected by the rule itself.
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TABLE 3 An illustrative example of response surfacemodeling for offline policy evaluation. For each defendant,
r̂ (RoR) and r̂ (bail) aremodel-based estimates of the likelihood of FTA under each potential action. In cases where the
observed action equals the proposed action, the observed outcome (FTA or not) is used to estimate the policy’s effect;
otherwise, themodel-based estimates are used. The gray shading indicates which values are used in each instance. The
overall FTA rate under the policy is estimated by averaging the shaded values over all cases.

Proposed action (π) Observed action (a) Observed outcome (r(a)) r̂(RoR) r̂(bail)
RoR RoR 0 20% 10%
Bail Bail 1 80% 30%
Bail RoR 1 90% 70%
RoR Bail 0 30% 25%
RoR RoR 0 20% 15%

where π(x ) denotes the action prescribed under the rule. The key statistical challenge is that only one of the two
potential outcomes, ri = ri (ai ), is observed. We note that policy evaluation is a generalization of estimating average
treatment effects. Namely, the average treatment effect can be expressed asV πRoR −V πbail , where πRoR is the policy
under which everyone is released and πbail is defined analogously.

Here we take a straightforward and popular statistical approach to estimatingV π : response surfacemodeling (Hill,
2012).10 With response surface modeling, the idea is to use a standard prediction model (e.g., logistic regression or
random forest) to estimate the effect on each defendant of each potential judicial action. Themodel estimates of these
potential outcomes are denoted by r̂i (t ), for t ∈ {RoR, bail}. Our estimate ofV π is then given by

V̂ π =
1

|Ω |

∑
i

[
ri I(π(xi ) = ai ) + r̂i (π(xi ))I(π(xi ) , ai )],

where I(·) is an indicator function evaluating to 1 if its argument is true and to 0 otherwise. If the prescribed action is in
fact taken by the judge, then ri = ri (π(xi )) is directly observed and can be used; otherwise we approximate the potential
outcomewith r̂i (π(xi )). Table 3 illustrates this method for a hypothetical example.

Response surfacemodeling implicitly assumes that a judge’s action is ignorable given the observed covariates (i.e.,
that conditional on the observed covariates, thosewho are RoR’d are similar to thosewho are not). Formally, ignorability
means that

(r (RoR), r (bail)) ⊥⊥ a �� x .
This ignorability assumption is typically unavoidable, and is similarly required for methods based on propensity
scores (Rosenbaum and Rubin, 1983b, 1984; Cassel et al., 1976; Robins et al., 1994; Robins and Rotnitzky, 1995;
Kang and Schafer, 2007; Dudík et al., 2011). We examine this assumption in detail in Section 4.3, and find that our
conclusions are robust under a commonmodel of unobserved heterogeneity.

To carry out this approach, we derive estimates r̂i (t ) via an L1-regularized logistic regression (lasso) model trained
on the second fold of our data. For each individual, themodel estimates likelihood of FTA given all the observed features
and the action taken by the judge. In contrast to the rule construction described above, this timewe train themodel on all
cases (not just those for which the judge RoR’d the defendant) and include as a predictor the judge’s action (RoR or bail);

10We investigated two alternative approaches—inverse propensityweighting (Rosenbaum andRubin, 1983b, 1984) and doubly robust estimation (Cassel et al.,
1976; Robins et al., 1994; Robins and Rotnitzky, 1995; Kang and Schafer, 2007; Dudík et al., 2011)—and found qualitatively similar results.
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F IGURE 5 Evaluation of simple and complex decision rules. Each point on the solid lines corresponds to decision
rules derived from a random forest (gray) or lasso (black) risk model using all 64 features with varying thresholds for
release. The red points correspond to policies based on the simple risk score using just two features for all possible
release thresholds. The simple rules perform nearly identically to the random forest models, and comparably to the
lassomodels. The open circles show the observed RoR and FTA rates for each judge in our data who presided over at
least 1,000 cases, sized in proportion to their case load. In nearly every instance, the statistical decision rules
outperform the human decisionmaker.

we also include the defendant’s race.11 Then, on the third fold of the data, we use the observed andmodel-estimated
outcomes to approximate the overall FTA rate for any decision rule.

Figure 5 shows estimated RoR and FTA rates for a variety of pretrial release rules. Points on the solid lines
correspond to rules constructed via the lasso (black line) and random forest (gray line) models that use all 64 available
features, as described above, for various decision thresholds. The red points correspond to rules based on the simple
scoring procedure in Figure 3, using just age and prior FTA, again corresponding to various decision thresholds. For each
rule, the horizontal axis shows the estimated proportion of defendants ROR’d under the rule, and the vertical axis shows
the estimated proportion of defendants whowould fail to appear at their court dates. The solid black dot shows the
status quo: 69% of defendants RoR’d and a 13% FTA rate. Finally, the open circles show the observed RoR and FTA rates
for each of the 23 judges in our data who have presided over at least 1,000 cases, sized in proportion to their case load.

The plot illustrates three key points. First, simple rules that consider only two features—age and prior FTAs—
perform nearly identically to state-of-the-art machine learning models (random forest and lasso regression) that
incorporate all 64 available features. Second, the statistically informed policies in the lower right quadrant all achieve
higher rates of RoR and, simultaneously, lower rates of FTA than the status quo. In particular, by releasing defendants if
and only if their risk score is below 3.5, we expect to release 79% of defendants while achieving an FTA rate of 13%.
Relative to the existing policy, following this rule would result in detaining one-third fewer defendants while also slightly

11Although it is legally problematic to use race whenmaking decisions, its use is acceptable—and indeed often required—when evaluating decisions. The model
was fit with the glmnet package in R. The cv.glmnet method was used to determine the best value for the regularization parameter λ with 10-fold cross-
validation and 1,000 values of λ. Themodel includes all pairwise interactions between the judge’s decision and defendant’s features. We opt for lasso instead
of random forest for this prediction task because we empirically found lasso to yield better predictions in this case.
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decreasing the overall FTA rate—from 13.3% to 13.0%. Finally, for nearly every judge, there is a statistical decision rule
that simultaneously yields both a higher rate of release and a lower rate of FTA than the judge currently achieves. The
statistical decision rules consistently outperform the human decisionmakers.

Why do these statistical decision rules outperform the experts? Figure 3 sheds light on this phenomenon. Each
cell in the grid corresponds to defendants binned by their age and prior number of FTAs. Under a rule that releases
defendants if and only if their risk score is below 3.5, one would release everyone to the left of the solid black line,
and set bail for everyone to the right of the line. The number in each cell shows the proportion of defendants in each
bin whowere actually released, and the cell shading graphically indicates this proportion. Aside from the lowest risk
defendants, who have no prior FTAs, the likelihood of being released does not correlate strongly with estimated flight
risk. For example, the high risk group of young defendants with two ormore prior FTAs is released at about the same
rate as the low risk group of older defendants with one prior FTA. This low correlation between flight risk and release
decision is in part attributable to extreme differences in release rates across judges, with some releasing more than
90% of defendants and others releasing just 50%.12Whereas defendants experience dramatically different outcomes
based on the judge they happened to appear in front of, statistical decision rules improve efficiency in part by ensuring
consistency.

4.3 | Sensitivity to unobserved heterogeneity
As noted above, our estimation strategy assumes that the judicial action taken is ignorable given the observed covariates.
Under this ignorability assumption, one can accurately estimate the potential outcomes. Judges, however, might base
their decisions in part on information that is not recorded in the data, which could in turn bias our estimates. For
example, a judge, uponmeeting a defendant, might surmise that his flight risk is higher than onewould expect based on
the recorded covariates alone, andmay accordingly require the defendant to post bail. In this case, since our estimates
are based only on the recorded data, we may underestimate the defendant’s counterfactual likelihood of failing to
appear if released.

We take two approaches to gauge the robustness of our results to such hidden heterogeneity. First, on each subset
of cases handled by a single judge, we use response surface modeling to estimateV π . Each judge has idiosyncratic
criteria for releasing defendants, as evidenced by the dramatically different release rates across judges; accordingly, the
types and proportion of cases for which the policy π coincides with the observed action differ from judge to judge. This
variation allows us to assess the sensitivity of our estimates to the observed actions {ai }. In particular, if unobserved
heterogeneity were significant, wewould expect our estimates to systematically vary depending on the proportion of
observed judicial actions that agree with the policy π . Figure 6 shows the results of this analysis for the simple decision
rule described in Figure 3, where each point corresponds to a judge. We find that the FTA rate of the decision rule is
consistently estimated to be approximately 12–14%. Moreover, some judges act in concordance with the decision rule
in nearly 80% of cases; for this subset of judges, where our estimates are largely based on directly observed outcomes,
we again find FTA is estimated at around 12–14%.

As a second robustness check, we adapt themethod of Rosenbaum and Rubin (1983a) for assessing the sensitivity
of estimated causal effects to an unobserved binary covariate. We specifically tailor their approach to offline policy
evaluation. At a high level, we assume there is an unobserved covariate u ∈ {0, 1} that affects both a judge’s decision
(RoR or bail) and also the outcome conditional on that action. For example, u might indicate that a defendant is
sympathetic, and sympathetic defendants may bemore likely to be RoR’d and alsomore likely to appear at their court
proceedings. Our key assumption is that a judge’s action is ignorable given the observed covariates x and the unobserved

12Defendants are not perfectly randomly assigned to judges for arraignment, but in practice judges see a similar distribution of defendants.
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F IGURE 6 Robustness of estimated FTA rate for the simple decision rule. FTA rate is estimated by applying
response surfacemodeling to each judge’s cases, where each point corresponds to a judge; the dashed horizontal line
indicates the FTA rate of the decision rule estimated on the full set of cases. Though judges have different criteria for
releasing defendants—and the corresponding responsemodels may thus differ—the FTA rate of the decision rule is
consistently estimated to be approximately 12–14%.

covariate u :

(r (RoR), r (bail)) ⊥⊥ a �� x ,u . (1)

There are four key parameters in this framework: (1) the probability that u = 1; (2) the effect of u on the judge’s decision;
(3) the effect ofu on the defendant’s likelihood of FTA if RoR’d; and (4) the effect ofu on the defendant’s likelihood of FTA
if bail is set. Our goal is to quantify the extent to which our estimate ofV π changes as a function of these parameters.

Without loss of generality, we canwrite

Pr(a = RoR |u, x ) = logit−1 (γx + uαx ) (2)

for appropriately chosen parameters γx and αx that depend on the observed covariates x . We note that randomness in
judicial decisionsmay arise from amultitude of factors, including idiosyncrasies in how judges are assigned to cases.
Here αx is the change in log-odds of being RoR’d when u = 0 versus when u = 1. For t ∈ {RoR, bail}, we can similarly
write

Pr(r (t ) |u, x ) = logit−1 (
β tx + uδ

t
x

) (3)

for parameters β tx and δ tx . In this case, δRoRx is the change in log-odds of failing to appear if RoR’d when u = 0 versus
when u = 1, and δbailx is the corresponding change if bail is set.

Now, for any posited values of Pr(u = 1 |x ), αx , δRoRx and δbailx , we use the observed data to estimate γx , βRoRx and



16 JUNG ET AL.

βbailx . We do this in three steps. First, by (2),

Pr(a = RoR |x ) = Pr(u = 0 |x ) · logit−1(γx ) + Pr(u = 1 |x ) · logit−1(γx + αx ).

The left-hand side of the equation can be estimatedwith a regressionmodel fit to the data. For fixed values of Pr(u = 1 |x )
and αx , the right-hand side is a continuous, increasing function of γx that takes on values from 0 to 1 as γx goes from
−∞ to +∞. There is thus a unique value γ̂x such that the right-hand side equals P̂r(a = RoR |x ). Rosenbaum and Rubin
(1983a) derive a simple closed form solution for γ̂x , facilitating fast computation on large datasets, which we omit for
space.

Second, we use the fitted values of γx to estimate the distribution of u given the observed covariates and judicial
action. By Bayes’ rule,

Pr(u = 1 |a = t , x ) = Pr(a = t |u = 1, x )Pr(u = 1 |x )Pr(a = t |x )
=

Pr(a = t |u = 1, x )Pr(u = 1 |x )
Pr(a = t |u = 1, x )Pr(u = 1 |x ) + Pr(a = t |u = 0, x )Pr(u = 0 |x ) .

With γ̂x , the Pr(a = t |u, x ) terms on the right-hand side can be estimated from (2), and we can thus approximate the
left-hand side.

Third, we have

Pr(r (t ) = 1 |a = t , x ) = Pr(u = 0 |a = t , x )Pr(r (t ) = 1 |a = t , x ,u = 0) + Pr(u = 1 |a = t , x )Pr(r (t ) = 1 |a = t , x ,u = 1)
= Pr(u = 0 |a = t , x )Pr(r (t ) = 1 |x ,u = 0) + Pr(u = 1 |a = t , x )Pr(r (t ) = 1 |x ,u = 1)
= Pr(u = 0 |a = t , x ) · logit−1 (

β tx
)
+ Pr(u = 1 |a = t , x ) · logit−1 (

β tx + δ
t
x

)
.

The second equality above follows from the ignorability assumption stated in (1), and the third equality follows from (3).
The left-hand side can be approximated by the quantity r̂x (t ) that we obtain via response surface modeling. Importantly,
r̂x (t ) is a reasonable estimate of Pr(r (t ) = 1 |a = t , x ) even though it may not be a good estimate of rx (t ). This distinction
is indeed the rationale of our sensitivity analysis. Given our above estimate of Pr(u = 1 |a = t , x ) and our assumed value
of δ tx , the only unknown on the right-hand side is β tx . As before, there is a unique value β̂ tx that satisfies the constraint.

With β̂ tx in hand, we can now approximate the potential outcome for the action not taken:

Pr(r (t̄ ) = 1 |a = t , x )

where t̄ = RoR if t = bail, and vice versa. Specifically, we have

P̂r(r (t̄ ) = 1 |a = t , x ) = P̂r(u = 0 |a = t , x ) · logit−1
(
β̂ t̄x

)
+ P̂r(u = 1 |a = t , x ) · logit−1

(
β̂ t̄x + δ

t̄
x

)
. (4)

Finally, the Rosenbaum and Rubin estimator adapted to policy evaluation is

V̂ πRR =
1

|Ω |

∑
i

[
ri I(π(xi ) = ai ) + r̂i (āi )I(π(xi ) , ai )],

where r̂i (āi ) = P̂r(r (āi ) = 1 |ai , xi ) is computed via (4).
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F IGURE 7 Sensitivity of FTA estimates to unobserved heterogeneity. The gray bands (for the complex rules using
lasso) and the error bars (for the simple rules) indicate minimum andmaximum FTA estimates for a variety of parameter
settings. In the left-hand plot, we assume α = log 2 and consider all combinations of p(u = 1) ∈ {0.1, 0.2, . . . , 0.9},
δRoR ∈ {− log 2, 0, log 2}, and δbail ∈ {− log 2, 0, log 2}, where all parameters are constant independent of x . In the
right-hand plot, we consider amore extreme situation, with α = log 3, δRoR ∈ {− log 3, 0, log 3}, and
δbail ∈ {− log 3, 0, log 3}. The results are relatively stable in these parameter regimes.

Figure 7 shows the results of computing V̂ πRR on our data in two parameter regimes. In the first (left-hand plot), we
assume α = log 2 and consider all combinations of p(u = 1) ∈ {0.1, 0.2, . . . , 0.9}, δRoR ∈ {− log 2, 0, log 2}, and δbail ∈
{− log 2, 0, log 2}. All parameters are constant independent of x . We thus assume that holding the observed covariates
fixed, a defendantwith u = 1 has twice the odds of being RoR’d as onewith u = 0, and that u can double or halve the odds
a defendant fails to appear. For each complex policy (i.e., one based on lasso), the gray bands show theminimum and
maximum value of V̂ πRR across all parameters in this set; the error bars on the red points show the analogous quantity for
the simple rules. In the right-hand plot, we consider amore extreme situation, with α = log 3, δRoR ∈ {− log 3, 0, log 3},
and δbail ∈ {− log 3, 0, log 3}. We find that our estimates are relatively stable in these parameter regimes. In the first
case (α = log 2) the estimated FTA rate for a given policy typically varies by only half a percentage point. Even in
the more extreme setting (α = log 3), policies are typically stable to about one percentage point. It thus seems our
conclusions are robust to potentially unobserved heterogeneity across defendants.

5 | THE ROBUSTNESS OF BINARY CLASSIFICATION

Why is it that simple rules often perform as well as the most sophisticated statistical methods? In part, it is because
binary classification accuracy is relatively robust to error in the underlying predictivemodel, an observation that we
formalize in Proposition 1 below.

To establish this result, we start by considering the prediction scores generated via a standard statistical method—
such as logistic regression trained on the full set of available features—which we call the “true” scores. As in linear
discriminant analysis, we assume that the true scores for positive and negative instances are normally distributed
with equal variance: N(µp ,σ2) and N(µn ,σ2), respectively. The homoscedasticity assumption guarantees the Bayes
optimal classifier is a threshold rule on the scores. For scores estimated via logistic regression, the normality assumption
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F IGURE 8 Empirical estimation of noise added by simple rules. Left panel: empirical distribution of prediction
scores, on the logit scale, for positive and negative instances of one UCI dataset (heart-cleveland), generated via an
L1-regularized logistic regressionmodel. Right panel: empirical distribution of ε for select-regress-and-round applied
to the same dataset.

is reasonable if we consider the scores on the logit scale rather than on the probability scale. Figure 8 (left panel)
shows such scores for one of the UCI datasets, heart-cleveland. We further assume that the process of generating
simple rules—both limiting the number of features and also restricting the possible values of the weights—can be
viewed as adding normal, mean-zero noise N(0,σ2ε ) to the true scores; Figure 8 (right panel) plots the distribution of this
noise for the same heart-cleveland dataset considered in the left panel.13 Thus, with simple rules, instead of making
classification decisions based on the true scores, we assume decisions are made in terms of a noisy approximation.
Under this analytic framework, Proposition 1 shows that the drop in classification performance (as measured by AUC)
can be expressed in terms of the “true AUC” (i.e., the AUC under the true scores) and γ = σ2ε /σ2 , the ratio of the noise to
the within-class variance of the true scores. In particular, we find that when themagnitude of the noise is on par with (or
smaller than) the score variance (i.e., γ . 1), then the AUC of the noisy approximation is comparable to the true AUC.

Proposition 1 For a binary classification task, letY be a continuous random variable that denotes the prediction score of a
random instance, and letYp andYn denote the conditional distributions ofY for positive and negative instances, respectively.
SupposeYp ∼ N(µp ,σ2) andYn ∼ N(µn ,σ2). Then, for ε ∼ N(0,σ2ε ) and Ŷ =Y + ε,

AUCŶ = Φ

(
Φ−1(AUCY )√

1 + γ

)
, (5)

where γ = σ2ε /σ2, andΦ is the CDF for the standard normal.

Proof In general, AUC is equal to the probability that a randomly selected positive instance has a higher prediction
score than a randomly selected negative instance, and so AUCY = Pr(Yp −Yn > 0) (Su and Liu, 1993). SinceYp −Yn is

13We estimate the noise distribution by taking the difference between the simple and true scores. Before taking the difference, we convert the simple scores
to the scale of true scores by dividing the simple scores byM , the scaling factor usedwhen generating the rule.
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F IGURE 9 Theoretical analysis of simple rules. Left panel: the theoretical change in AUC, as a function of γ. Right
panel: distribution of γ̂, estimated across all simple rules for 21 datasets with k = 5 andM = 3.

normally distributed withmean µp − µn and variance 2σ2,

Yp −Yn − (µp − µn )
√
2σ

∼ N(0, 1).

Hence,

AUCY = Pr
(
Yp −Yn − (µp − µn )

√
2σ

> −
µp − µn
√
2σ

)
= Φ

(
µp − µn
√
2σ

)
,

where the last equality follows from symmetry of the normal distribution.
Now define Ŷp =Yp + ε, so Ŷp ∼ N(µp ,σ2 + σ2ε ), with Ŷn defined similarly. A short computation shows that

AUCŶ = Pr(Ŷp > Ŷn )

= Φ
©­­«

µp − µn√
2σ2 + 2σ2ε

ª®®¬
= Φ

(
Φ−1(AUCY )√

1 + γ

)
.

Proposition 1 establishes a direct theoretical link between performance and noise in model specification. To give a
better sense of how the analytic expression forAUCŶ varieswithAUCY and γ, Figure 9 (left panel) shows this expression
for various parameter values. For example, the figure shows that for AUCY = 90%and γ = 0.5, we have AUCŶ = 85%.
That is, if the amount of noise is equal to half the within-class variance of the true scores, then the drop in performance
is relatively small.

While connectingmodel performance tomodel noise, Proposition 1 leaves unanswered howmuch noise simple
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rules add to the underlying scores. This question seems difficult to answer theoretically. We can, however, empirically
estimate howmuch noise simple rules add in the datasets we analyze.14 The right panel of Figure 9 shows the distribu-
tion of γ̂ across the 21UCI datasets we consider, when using rules with five features and a coefficient range of -3 to 3,
with an average value of γ̂ = 0.22. This low empirically observed noise is in line with our finding that such simple rules
performwell on these datasets.15

6 | CONCLUSION
Ourwork extends past research on improper linearmodels by formalizing and evaluating a simplemethod for construct-
ing simple rules—rules that experts can applymentally to guide classification decisions. These simple rules take the form
of a short checklist whose factors have small integer weights. In 22 domains of varying size and complexity, the rules
produced by the select-regress-and-roundmethod rivaled the accuracy of regularized logistic regressionmodels, while
using only a fraction of the information. In a detailed analysis of pretrial release decisions, the simple rules outperformed
human judges andmatchedmachine learningmodels that incorporated 64 features. (In Appendix C, we provide another
detailed demonstration of select-regress-and-round to assess credit risk, and reach similar conclusions.)

Although our focus has been on the comparison between simple, statistically informed decision rules andmore
complexmachine learningmethods, our results are also in accordancewith anextensive literature comparing predictions
by human experts to those based on statistical models. Over 60 years ago, Meehl contrasted clinical methods for
predicting behavior, which rely on professional judgment, with actuarialmethods, which rely on statistically derived
patterns in data (Meehl, 1954). Subsequently, large meta-analyses have consistently demonstrated that actuarial
methods outperform clinical approaches, including in the context of predicting criminal activity (Ægisdóttir et al., 2006),
and even for judgments by themost experienced professionals. These results hold in the judicial context as well, where
clinical assessments of risk by judges are generally worse at predicting recidivism than actuarial formulas (Gottfredson,
1999). Our analysis of a large dataset of judicial decisions provides further evidence that simple statistical models can
outperform experts in a high-stakes domain.

Statistically informed rules, and simple checklists in particular, may result in improved accuracy and consistency
compared to unaided human decisions, but a number of open questions remain. First, in many contexts, allowing
human overrides of algorithmic decision aids may be legally mandated, but such overrides can reduce accuracy (Krauss,
2004). In the criminal justice setting, past work indeed suggests that judges may not apply the recommendations of risk
assessments in a consistent manner (Christin, 2017; DeMichele et al., 2018). It is important to strike an appropriate
balance, allowing for human overrides in exceptional instances while not degrading overall performance. Second, in
contexts where an outcome variable has a nonlinear relationship with a set of predictors, the simple rules produced
by select-regress-and-roundmay not be flexible enough tomake useful predictions (e.g., in Figure B3, all linear model
show poor performance on the chess-krvk dataset). One solutionmay be to allow additional model flexibility in select-
regress-and-round, though that approach could be at odds with the goals of transparency and interpretability. Finally, it
is unclear howwell simple rules would work in domains with little training data, but we also note that prediction tasks
using small sample sizes remain challenging for more complexmethods.

Our results complement a growing body of work in statistics and computer science on interpretable machine
learning, in which sophisticated algorithms are used to create simple scoring systems and rule sets (Ustun and Rudin,

14To estimate γ = σ2ε /σ2 for a specific simple rule on a given dataset, we first compute the averagewithin-class variance of the true scores, where these scores
are generated via an L1-regularized logistic regressionmodel. We estimateσ2ε by taking the variance of the noise, as described in Footnote 13.

15In Appendix B.1, we further test the empirical robustness of probabilistic risk predictions, in addition to binary classification, using simple rules. We find that
probabilistic estimates from our simple rules are comparable to those frommore complex statistical models.
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2016; Wang and Rudin, 2015; Lakkaraju et al., 2016). While many of these rule construction methods offer great
flexibility, they in turn require considerable computational resources and expertise to carry out. In contrast, the method
we propose can easily be carried out by ordinary practitioners using popular open-source software. It has long been
noted that statistical models tend to outperform unaided human judgment (Einhorn andHogarth, 1975; Green, 1977;
Dawes, 1979; Gigerenzer and Goldstein, 1996;Waller and Jones, 2011). We hope that providing practitioners with
models that are both easy to apply and easy to construct will increase their adoption and, ultimately, the quality of
decisions.
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Appendix A | DESCRIPTION OF UCI DATASETS

Here we provide a short description of the classification task associated with each of the 21 UCI datasets that we
consider in Section 3.

• adult: Predict whether income exceeds $50K/yr based on census data. Also known as “Census Income” dataset.
• annealing: Classify steel types based on various annealing properties.
• audiology-std: Standardized version of the original audiology database first presented in Bareiss et al. (1988).
• bank: The data is relatedwith direct marketing campaigns (phone calls) of a Portuguese banking institution. The

classification goal is to predict if the client will subscribe a term deposit.
• bankruptcy: Predict bankruptcy based on qualitative parameters measured by experts.
• car: Determine whether a car is “acceptable” or not, based on quantitative attributes. Originally presented

in Bohanec and Rajkovic (1988).
• chess-krvk: Chess end-game data for white king and rook against black king (KRK). Classification task is to

determine whether white canwin or not.
• chess-krvkp: Chess end-game data for king and rook versus king and pawn on A7 (usually abbreviated KRKPA7).

The pawn on A7means it is one square away from queening. It is the king and rook’s turn (white) to move. The goal
is to classify whether white canwin or not.

• congress-voting: 1984 United Stated congressional voting records. The task is to classify votes as republican or
democrat.

• contrac: A subset of the 1987 National Indonesia Contraceptive Prevalence Survey. The samples are married
womenwhowere either not pregnant or do not know if theywere at the time of interview. The problem is to predict
the current contraceptivemethod choice (no use, long-termmethods, or short-termmethods) of a woman based on
her demographic and socio-economic characteristics.

• credit-approval: A collection of credit card applications. The task is to determinewhether the application was
approved or not.

• ctg: Measurements of fetal heart rate (FHR) and uterine contraction (UC) features on cardiotocograms classified
by expert obstetricians. The task is to classify the fetal state as normal, suspect, or pathologic.

• cylinder-bands: Predict process delays known as “cylinder bands” in rotogravure printing.
• dermatology: The aim of this dataset is to determine the type of Eryhemato-Squamous Disease.
• german_credit: This dataset classifies people described by a set of attributes as good or bad credit risks.
• heart-cleveland: The goal is to determine the presence of heart disease in the patients. The outcome is integer

valued from0 (no presence) to 4. Experimentswith theCleveland database have concentrated on simply attempting
to distinguish presence (values 1,2,3,4) from absence (value 0).

• ilpd: This dataset contains 416 liver patient records and 167 non liver patient records. The data were collected
from the northeast of Andhra Pradesh, India.

• mammo: Discrimination of benign and malignant mammographic masses based on BI-RADS attributes and the
patient’s age.

• mushroom: From the Audobon Society Field Guide. Mushrooms are described in terms of physical characteristics.
The task is to classify them as either poisonous or edible.

• wine: Using chemical analysis, determine the origin of wines.
• wine_qual: Two datasets are included, related to red and white vinho verde wine samples, from the north of

Portugal. The goal is tomodel wine quality based on physicochemical tests.
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Appendix B | ADDITIONAL RESULTS FOR UCI DATA
B.1 | Robustness of probability estimates with simple rules
To gauge the robustness of probability estimates derived from simple rules, we compare themean absolute deviation of
those estimates to the predictions from a lassomodel that uses all available features. For each integer score produced
by a select-regress-and-round model, we compute the corresponding probability estimate for the simple rule by
considering all cases in the training set with that score, and then computing the empirical frequency of the outcome of
interest, as detailed in Section 4.1. As shown in Figure B1, using five features and rounding coefficients to the interval
[−3, 3], probability estimates using select-regress-and-round deviate from the lasso predictions by about 6 percentage
points on average across the UCI datasets.
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F IGURE B1 Mean absolute deviation of probability estimates based on simple rules compared to those from a
complex lassomodel, averaged over all the UCI datasets.

B.2 | Detailed results for individual datasets
Here, we disaggregate the results in Section 3.1 to compare simple rules and complexmodels on each of the 21UCI
datasets. First, Figure B2 compares the performance of select-regress-and-round using up to 5 features and rounding to
the nearest integer in the range [-3, 3] (i.e., k = 5,M = 3) against each of the three benchmarkmodels for each individual
dataset. In Figure B2, each point represents a dataset, and the corresponding horizontal and vertical position shows
the cross-validated AUC of the complex models and simple rules, respectively. For the logistic regression and lasso
comparisons, all points are very close to the diagonal, indicating that select-regress-and-round performs on par with
these complexmodels for each individual dataset. On the other hand, we see that a random forest model outperforms
simple rules in many situations. Next, Figure B3 provides amore detailed comparison by replicating Figure 1 for each
individual dataset. We observe that in general, model comparisons on individual datasets are similar to those that
average over all datasets. Finally, in Figure B4 we similarly plot performance, but replace the horizontal axis with
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the number of non-zero coefficients instead of features. Amodel can havemore non-zero coefficients than features,
because a categorical variable withmore than two categories will yield more than two non-zero coefficients after each
category has been binarized. For example, the rule presented in Figure 3 has two features: age and prior FTAs, but five
non-zero coefficients.

●

●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

Logistic Lasso Random forest

50% 60% 70% 80% 90% 100% 50% 60% 70% 80% 90% 100% 50% 60% 70% 80% 90% 100%

50%

60%

70%

80%

90%

100%

AUC for "complex" model

A
U

C
 fo

r 
S

R
R

F IGURE B2 Performance comparison across each of the 21UCI datasets, for simple rules using up to 5 features,
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outperforms select-regress-and-round, simple rules are comparable in performancewith logistic and lasso regression
across most datasets.
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Appendix C | ALTERNATIVE CASE STUDY WITH GERMAN_CREDIT DATA
Here, we illustrate select-regress-and-round on the german_credit data. This dataset consists of 1,000 cases labeled
as having either good or bad credit. Each row is described by 20 features; 7 continuous and 13 categorical.16 The goal
is to estimate the risk of default (labeled as “bad” credit) for each case. We split the data randomly into 900 cases for
training and 100 cases for evaluation.17

As a benchmark, we first fit a random forest model with 1,000 trees on the training data using all 20 available
features. The result is a complexmodel that achieves 0.80 AUC on the test set. A full ROC curve for the complexmodel
is presented as a blue line in Figure C6. According to the steps presented in Section 2, we build a simple rule to score the
risk of default for a given case. Note that as described previously, we discretize continuous features into three bins of
approximately equal sizes to prioritize simplicity. This is achieved by discretizing each continuous feature at the 33rd
and 67th percentile in the training data, and applying the same cut-offs to the test data. For example, Figure C5 shows
the distribution of the duration in months feature in the training data, which represents the months an applicant
has lived at their current address. The 33rd and 67th percentile of this feature are 12 and 24, respectively, hence the
feature is discretized at these points for both the train and test data. In detail, we perform the following steps:

1. Select. From the full set of 20 features, we select k = 5 features via forward stepwise selection. The features that
are selected, in order, are: checking account status, months lived at current address, credit history,
savings account/bonds, and guarantors.

2. Regress. Using the five selected features, we train an L1-regularized (lasso) logistic regression model to predict
whether the credit is good (0) or bad (1) for each case. The regularization parameter, λ, is chosen via 10-fold cross-
validation. Following Friedman et al. (2010), we explore a regularization path with 1,000 values of λ spaced evenly
on log-scale in the range (λmin, λmax), where λmin = 10−4 and λmax is set to 0.141, theminimum value such that all
coefficients are regularized to zero. We find that λ?, the value of λ that maximizes cross-validated performance is
about 0.004. The second column of Table C1 shows the fitted lassomodel coefficients.

3. Round.We rescale the coefficients of themodel from Step 2 to be in the range [−3, 3] (e.g.,M = 3), and then round
the rescaled coefficients to the nearest integer. The final scores corresponding to each variable are listed in the
third column of Table C1.

Figure C6 shows the comparison of ROC curve performance on the held-out test set, between the random forest
model (blue) and our simple rule in Table C1 (red). In practice, a decisionmaker would typically select a threshold based
on various costs to determine which loan applications to approve or reject. However, our results demonstrate that
across all threshold values, a simple, transparent rule achieves nearly identical performance when compared with a
considerably more complexmodel.

This case study and all results can be replicated by running the case_study.R script provided in our public code
repository: https://github.com/stanford-policylab/simple-rules. In addition, we havemade it easy to generate simple
rules for any combination of parameters for each of the 21UCI datasets, by providing an Rmarkdown file that can be
run using freely available software.

16A full description of the dataset can be found at the UCI repository: https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29
17Weuse a single 9:1 split for simplicity here, but note that our main results reported in Figure 1were obtained via 10-fold cross validation.
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F IGURE C5 Distribution of the continuous feature duration in months in the training data. Red dashed lines
indicate values at the 33rd and 67th percentiles, which are used to discretize the continuous feature into three bins of
approximately equal size.

TABLE C1 Simple rule for determining risk of default, derived using select-regress-and-round on the
german_credit dataset with k = 5 andM = 3. Variables with a zero Lasso coefficient have been omitted.

Selected feature Lasso coefficient SRR score
Checking account status
Less than 200DM 0.3 1
200DMor above 0.92 2
No checking account 1.56 3
Months lived at current address
Between 12 and 24months -0.39 -1
24months or more -1.02 -3
Credit history
All credits at this bank paid back -0.36 -1
Delayed payments in the past 0.56 1
Unpaid credits existing (not at this bank) 1.23 3
Savings account/bonds
100 ≤ value < 500DM 0.1 0
500 ≤ value < 1000DM 0.67 2
1000DM ≤ value 1.002 2
No known savings account 0.99 2
Guarantors
Co-applicant -0.34 -1
Guarantor 1.35 3
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F IGURE C6 ROC curve comparing performance of a complex (random forest, in blue) model that uses all 20
available features to predict whether an individual has “good” or “bad” credit, versus the simple rule derived using SRR,
as shown in Table C1 (red). The ROC curve for simple rules is shown as points, since a simple rule results in discrete
cut-offs. The complexmodel and simple rule achieve AUCs of 0.80 and 0.78, respectively. Note that while a decision
maker would typically select a threshold based on various costs given a risk score, our results show that a simple rule
achieves almost identical performance compared to a complexmodel for all possible threshold values, with the
additional benefit of being transparent and interpretable.


