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How Good Are Simple Heuristics?

Jean Czerlinski
Gerd Gigerenzer
Daniel G. Goldstein

Psychology has forgotten that it is a science of organism-
environment relationships, and has become a science of the
organism. . . . This . .. is somewhat reminiscent of the posi-
tion taken by those inflatedly masculine medieval theo-
logians who granted a soul to men but denied it to women.
Egon Brunswik

Steve Bauer won the first day of the 1991 Tour de France, but placed
97th out of 200 at the end of the three-week race (Abt, 1991). Every day
of this grueling bicycle tour covers a different type of terrain, and winning
on one day does not guarantee good performance on the others. Likewise,
Take The Best’s success in Gigerenzer and Goldstein’s (chapter 4} compe-
tition inferring German city populations does not guarantee that it will do
well in other competitions. So before selling your sophisticated multiple
regression software and converting to fast and frugal ways, heed this chap-
ter. The strategies will complete two tours of 20 environments and predict
everything from fish fertility to fuel consumption. The first tour will be
data fitting: Strategies will train on the same course on which the race
will be held. The second tour will be harder because the strategies will
not be allowed to see the actual course until they race on it; they must
train off-location. The results of these tours will pave the way for deciding
when it pays to be fast and frugal and when it is better to use a more
complex strategy such as multiple linear regression.

Meet the Environments

The glamour of the Tour de France is that it covers a wide variety of
terrains, from flat to hilly to mountainous. Steve Bauer won the first day
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98 ONE-REASON DECISION MAKING

because he excelled on the plains, but lost the tour because he could not
keep up on the mountains. The winner must be an all-rounder. Our tour
is no different, consisting of 20 diverse environments. An environment
consists of objects, each associated with a criterion to be predicted and a
number of cues that may be helpful in predicting it. The task in the com-
petition is to infer which of two objects scores higher on the criterion, for
example, inferring which of two high schools has a higher dropout rate.
Cues useful for making this inference could include the percentage of low-
income students at the high school, the average SAT score, and the degree
of parental involvement in their children’s schooling. Our environments
cover disparate domains from the objective number of car accidents on a
stretch of highway to the subjective ratings of the attractiveness of public
figures (table 5-1). The environments vary in size from 11 objects (ozone
levels in San Francisco measured on 11 occasions) to 395 objects (fertility
of 395 fish), and from 3 cues (the minimum needed to distinguish among
the strategies) to 18 cues. To win this tour, an inference strategy will have
to perform well in a variety of environments. Most of the environments
come from statistics textbooks and are used to teach statistics, usually as
examples of good applications of multiple regression. This should make
it less than easy for Take The Best to compete with regression.

Meet the Competitors

Gigerenzer and Goldstein’s competition (chapter 4) pitted a wide range of
inference strategies against each other. Below we briefly describe four of
the strategies; for more details see the previous chapter.

Take The Best

Imagine a bicycle built from the favorite parts of several racers, one con-
tributing a frame, another a brake, a third a crankshaft. Instead of bicycle
parts, Take The Best is assembled from cognitive building blocks: simple
heuristics for search, stopping, and decision (see chapters 1 and 4 for defi-
nitions of these terms).

The first step of Take The Best is the recognition heuristic. In both
tours, we will test the competitors in prediction tasks where all objects
are recognized and all cue values are known; thus Take The Best will not
be able to take advantage of the recognition heuristic, as it could in the
previous chapter. Recall that Take The Best tries cues in order, one at @
time, searching for a cue that discriminates between the two objects iP
question. For example, when inferring two professors’ salaries, the rank
Cue might be tried first. If both professors are of the same rank (say both
assaciate professors), then the gender cue might be tried. If one of the
professors is a woman and the other is a man, then we say that the gender
cue “discriminates.” Once a discriminating cue is found, it serves as the
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Table 5-1: A Description of the 20 Environments Used in the Competition

Psychology

Attractiveness of men: Predict average attractiveness ratings of 32 famous men
based on the subjects’ average likeability ratings of each man, the percentage of
subjects who recognized the man’s name (subjects saw only the name, no photos),
and whether the man was American. (Based on data from a study by Henss, 1996,
using 115 male and 131 female Germans, aged 17-66 years.)

Attractiveness of women: Predict average attractiveness ratings of 30 famous
women based on the subjects’ average likeability ratings of each woman, the per-
centage of subjects who recognized the woman’s name {subjects saw only the name,
no photos), and whether the woman was American. (Based on data from a study
by Henss, 1996, using 115 male and 131 female Germans, aged 17-66 years.)

Sociology

High school dropout rates: Predict dropout rate of the 57 Chicago public high
schools, given the percentage of low-income students, percentage of nonwhite stu-
dents, average SAT scores, etc. (Based on Morton, 1995, and Rodkin, 1995.)

Homelessness: Predict the rate of homelessness in 50 U.S. cities given the average
temperature, unemployment rate, percentage of inhabitants with incomes below
the poverty line, the vacancy rate, whether the city has rent control, and the per-
centage of public housing. (From Tucker, 1987.)

Demography

Mortality. Predict the mortality rate in 20 U.S. cities given the average January tem-
perature, pollution level, the percentage of nonwhites, etc. (Based on McDonald &
Schwing, 1973; reported in StatLib.}

City population: Predict populations of the 83 German cities with at least 100,000
inhabitants based on whether each city has a soccer team, university, intercity train
line, exposition site, etc. (From Fischer Welt Almanach, 1993.)

Economics

House price: Predict the selling price of 22 houses in Erie, PA, based on current
property taxes, number of bathrooms, number of bedrooms, lot size, total living
space, garage space, age of house, etc. (Based on Narula & Wellington, 1977; re-
ported in Weisberg, 1985.)

Land rent: Predict the rent per acre paid in 58 counties in Minnesota (in 1977 for
agricultural land planted in alfalfa) based on the average rent for all tillablg land,
density of dairy cows, proportion of pasture land, and whether liming is required to
grow alfalfa. (Alfalfa is often fed to dairy cows.) (Data provided by Douglas Tiffany;
reported in Weisberg, 1985.)

Professors’ salaries: Predict the salaries of 51 professors at a midwestern college
given gender, rank, number of years in current rank, the highest degree earned, and
number of years since highest degree earned. (Reported in Weisberg, 1985.)

(continued}
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Table 5-1: Continued

Transportation

Car accidents: Predict the accident rate per million vehicle miles for 37 segments
of highway, using the segment’s length, average traffic count, percentage of truck
volume, speed limit, number of lanes, lane width, shoulder width, number of inter-
sections, etc. for Minnesota in 1973. (Based on an unpublished master’s thesis in
civil engineering by Carl Hoffstedt; reported in Weisberg, 1985.}

Fuel consumption: Predict the average motor fuel consumption per person for each
of the 48 contiguous United States using the population of the state, number of
licensed drivers, fuel tax, per capita income, miles of primary highways, etc. (Based
on data collected by Christopher Bingham for the American Almanac for 1974,
except fuel consumption, which was given in the 1974 World Almanac; reported
in Weisberg, 1985.)

Health

Obesity at age 18: Predict fatness at age 18 of 46 children based on body measure-
ments from age 2 to age 18. The body measurements included height, weight,
leg circumference, and strength. (Based on the longitudinal monitoring of the
Berkeley Guidance Study, Tuddenham & Snyder, 1954; reported in Weisberg,
1985.)

Bady fat: Predict percentage of body fat determined by underwater weighing (a
more accurate measure of body fat) using various body circumference measure-
ments (which are more convenient measures than underwater weighing) for 218
men. (Data supplied by A. Garth Fisher from the study of Penrose et al., 1985;
reported in StatLib.)

Biology

Fish fertility: Predict the number of eggs in 395 female Arctic charr based on each
fish’s weight, its age, and the average weight of its eggs. (Data courtesy of Christian
Gillet, 1996.)

Mammals’ sleep: Predict the average amount of time 35 species of mammals sleep,
based on brain weight, body weight, life span, gestation time, and predation and
danger indices. (From Allison & Cicchetti, 1876; reported in StatLib.)

Cow manure: Predict the amount of oxygen absorbed by dairy wastes given the
biological oxygen demand, chemical oxygen demand, total Kjedahl nitrogen, total
solids, and total volatile solids for 14 trials. (Moore, 1975; reported in Weisberg,
1985.)

Environmental Science

Piodiversity: Predict the number of species on 26 Galapagos islands, given
their area, elevation, distance to the nearest island, area of the nearest island, dis-
tance from the coast, etc. (Based on Johnson & Raven, 1973; reported in Weisberg,
1985.)

Rainfall from cloud seeding: Predict the amount of rainfall on 24 days in Coral
Gables, FL, given the types of clouds, the percentage of cloud cover, whether the
clouds were seeded, number of days since the first day of the experiment, etc.
(From Woodley et al., 1977; reported in Weisberg, 1985.)

Oxidant in Los Angeles: Predict the amount of oxidant in Los Angeles for 17 days
given each day’s wind speed, temperature, humidity, and insolation (a measure of
the amount of sunlight). (Data provided by the Los Angeles Pollution Control Dis-
trict; reported in Rice, 1995.)
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Table 5-1: Continued

Ozone in San Francisco: Predict the amount of ozone in San Francisco on 11 occa-
sions based on the year, average winter precipitation for the past two years, and
ozone level in San Jose, at the southern end of the Bay. (From Sandberg et al., 1978;
reported in Weisberg, 1985.)

Note. For each environment we specify the criterion, a sample of the cues for predicting the
criterion, and the source of the data. Recall that the cues are either binary or were dichotomized
by a median split, and that the task is always to predict which of two objects scores higher at
the criterion.

basis for an inference, and all other cues are ignored. For instance, if gen-
der discriminates between two professors, the inference is made that the
male earns a higher salary, and no other information about years of experi-
ence or highest degree earned is considered. Could such one-reason deci-
sion making be accurate? This chapter will answer this question.

Since Take The Best does not integrate information or require extensive
computations, it is fast. Since it has a stopping rule to effect limited search
for cues, it is frugal. In this competition, Take The Best looks up cues in
the order of their validities, which it has to estimate from a training set.
Recall that the validity of a cue is defined as the number of correct infer-
ences divided by the number of correct and incorrect inferences made
using the cue alone (chapter 4).

The Minimalist

The fast and frugal Minimalist looks up cues in a random order, stopping
when it finds a cue that discriminates between the two objects. Otherwise,
it is exactly the same as Take The Best. In the simulation, it will not be
able to take advantage of the recognition heuristic, for the same reason as
for Take The Best.

Multiple Regression

Multiple linear regression is the most thoroughly trained and well-
equipped rider in the pack. It rides on sophisticated computations rather
than on fast and frugal building blocks. Regression assumes the data can
be approximated by a hyperplane plus independent, identically distrib-
uted errors with zero mean. It then finds the hyperplane that minimizes
the squared vertical distance between the hyperplane and the data points.
Finding an optimal fitting surface is not the kind of calculation that can
be easily carried out with pencil and paper or a standard pocket calcula-
tor—a computer is called for. When regression is used to make a predic-
tion, all of the available cues must be gathered and plugged into the
model, so it is not frugal. Furthermore, since multiple regression requires
extensive computations, it is not fast.
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Dawes’s Rule

Dawes’s rule is a simplification of regression. The model is still linear,
but instead of optimal weights, only unit weights (+1 or —1) are used
(Dawes, 1979). That is, it adds up the number of pieces of positive evi-
dence and subtracts the number of pieces of negative evidence. We opera-
tionalize the assignment of the unit weights by giving a cue a weight of
+1 if a cue’s validity is above chance (.5) and —1 if it is below chance.
Since using Dawes’s rule to make a prediction still requires all of the cues,
it is not frugal. But unlike regression it is fast, since the weighting scheme
is trivial.

We have defined athletes with four differing strategies. Who will win
the 20-environment tour?

The First Tour: Fitting Known Environments

In our first tour, the riders were allowed to examine every detail of the
race course before the competition. There were no missing cue values or
unrecognized objects, unlike the scenarios in chapters 2, 3, and 4. All of
the cue and criterion values were available for calculating cue validities
or linear weights. The strategies then predicted the criterion values (which
they had already seen). This type of contest is called data fitting. The first
two environments that were fit, high school dropout rates and professorial
salaries, will be described in detail to give a sense of how the strategies
compete against one another. Then we will jump to the end of the race to
see who won the overall tour and by how much.

Dropping Out

The first stage of the tour is important for American society: predicting
dropout rates at Chicago public high schools. The 1995 rates were pub-
lished in Chicago magazine (Morton, 1995; Rodkin, 1995), along with pos-
sible cues such as the socioeconomic and ethnic compositions of the stu-
dent bodies, the sizes of the classes, the attendance rates of the students,
the parent participation rates, and the scores of the students on various
standardized tests.

We prepared the raw data from the magazine to suit the four inference
strategies. We converted all cue values that were real numbers into ones
and zeroes using the median as a cutoff. These ones and zeroes were s
signed such that the ones corresponded to higher values on the criterion.

After the data were transformed into the appropriate format, their char-
acteristics could be measured. Overall, the dropout environment looked
fairly challenging. The average cue validity was only .63, compared to .76
for the German city population data. The maximum cue validity was also
rather low, .72. These characteristics should create considerable difficul-
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ties for Take The Best, which relies on only the best cue that discriminates
between two high schools. Furthermore, the environment comprised a to-
tal of 18 cues, double the number in the city population environment.
Since Dawes’s rule improves in accuracy with the addition of more cues
(see chapter 6), this environment was a particularly tough test for Take
The Best and the Minimalist.

Before revealing the accuracy of the strategies in predicting dropout
rates, let us review the results on German city populations (figure 4-2; the
values on the right of the graph where all objects are recognized). Recall
that multiple regression made 74% correct inferences. Dawes’s rule did
very well in comparison, also earning 74% correct. The surprising finding
was that Take The Best matched the 74% performance of these linear
strategies. Finally, the exceedingly simple Minimalist scored a respectable
70% correct.

What happened on the more difficult high school dropout environ-
ment? Despite the lower cue validities, regression was still able to get 72%
of the inferences correct (table 5-2, “fitting”). Perhaps the large number of
cues made up for the low validities. Dawes’s rule did not seem to be able
to take as much advantage of the many cues, getting only 64% correct.
Take The Best made 65% of the inferences correctly—slightly better than
Dawes’s rule but still seven percentage points behind the performance of
linear regression. The Minimalist was again the weakest strategy, but not
too far behind Take The Best with 61% correct. Take The Best and the
Minimalist looked up on average only a few cues (table 5-2). Speed and
frugality paid the price of seven percentage points in lost accuracy on the
difficult high school dropout data.

Policy Implications Discovering which strategy best fits the data can have

important consequences for public policy. For example, Take The Best
regarded attendance rate, writing test score, and social science test score

Table 5-2: Predicting High School Dropout Rates

Accuracy (% Correct)

Strategy Frugality Fitting Generalization
Minimalist 2.7 61 58
Take The Best 3.4 65 60
Dawes’s rule 18 64 62
Multiple regression 18 72 54

Note. Performance of two fast and frugal heuristics {(Minimalist, Take The Best) and
two linear strategies (Dawes’s rule, multiple regression) in predicting wl}ich of twa
Chicago high schools has a higher dropout rate. There were 57 public h}gh schools
and 18 predictors (table 5-1). Performance is measured in terms'of frugality {average
number of cues looked up) and accuracy (% correct). Accuracy is mea'su‘red both for
fitting data (test set = training set), and for generalization (test set # training set): The
average number of cues looked up was about the same for both kinds of competition.
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as the most valid cues for dropout rate, in that order. In contrast, linear
regression’s top three predictors were percentages of Hispanic students,
students with limited English, and black students. Thus, each strategy led
to different implications for how we can help schools lower dropout rates.
While a user of Take The Best would recommend getting students to at-
tend class and teaching them the basics more thoroughly, a regression
user would recommend helping minorities assimilate and supporting En-
glish as a second language (ESL) programs. Because regression resulted in
the best fit, it looked like the regression user would be able to give better
advice for lowering dropout rates.

Professors’ Income

Let us now consider how well the strategies predict individual professors’
salaries from the following five cues: gender, rank (assistant, associate,
full professor), number of years in current rank, highest degree earned,
and number of years since degree earned. The data is from a midwestern
college, which shall remain anonymous. Clearly, this environment al-
ready had one binary variable (gender); the rest were dichotomized at the
median.

This environment had a maximum cue validity of .98 and its average
cue validity was .79, similar to the city population environment. It had
only five cues, about half as many as for predicting populations. How
would this affect the accuracy of Take The Best and the Minimalist? One
intuitive answer would be that high cue validities and few cues allow the
two heuristics to keep up with the algorithms that integrate information
across cues; let us see if this was true.

Crossing the finish line first was the rider on the fanciest and most
expensive bicycle, multiple regression, with a stunning 83% correct (table
5-3, “fitting”). This was surprising since the environment seemed to be

Table 5-3: Predicting Professors’ Salaries

Accuracy (% Correct)

Strategy Frugality Fitting Generalization
Minimalist 2.1

. 73
Take The Best 2.3 80 ;(2)
Dawes’s rule 5 75 75
Multiple regression 5 83 80

:Vote.ﬁPerformance'a of two fast and frugal heuristics (Minimalist, Take The Best) and
wof near strategnes (Dawes’s rule, multiple regression) in predicting which of two
gro essors at a midwestern college has a higher salary. There were 51 professors and

ve l}:redlctors {table 5-1). Performance is measured in terms of frugality (average
gux'n er of cues looked l{p) and accuracy (% correct). Accuracy is measured both for
tting data (test set = training set), and for generalization (test set « training set). The
average number of cues looked up was about the same for both kinds of competition.
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about the same as the cities except with half as many cues. Taking one
cue at a time, Take The Best somehow managed second place by scoring
80% correct. Dawes’s rule, the leaner linear model, got 75% correct, not
as far behind linear regression as it was with school dropout rates. The
Minimalist finally pulled in at 73%, almost as good as Dawes’s rule.

It turned out that the best cue for predicting professor salary was rank,
with a cue validity of .98. It may not come entirely as a surprise that the
second best cue was gender, with a validity of .88. In this environment,
regression was mostly in agreement, giving rank the greatest weight, fol-
lowed by highest degree earned and gender.

The Overall Winner of the First Tour

We now have a sense of how the competition works and how the charac-
teristics of the environments might affect the strategies. Let us finally find
out which strategy won on the complete range of environments, that is,
fitting both the mountain roads and the plains closely enough to win the
overall tour.

How frugal were the heuristics? The Minimalist searched for only 2.2
cues on average to make an inference. Take The Best needed slightly more
cues, 2.4, whereas the two linear strategies always used all the available
information, 7.7 cues on average (the linear strategies have no heuristics
for search and stopping). Thus, the two heuristics looked up fewer than a
third of the cues. If they are so frugal, how accurate can they be?

Perhaps it is no surprise that the first-place finisher was multiple linear
regression, which used all information and subjected it to complex com-
putation (table 5-4, “fitting”). Across the 20 environments, regression scored
77% correct. However, the second-place finisher may be a surprise. The

Table 5-4: Performance Across 20 Data Sets

Accuracy (% Correct)

Strategy Frugality Fitting Generalization
Minimalist 2.2 69 65
Take The Best 2.4 75 71
Dawes’s rule 7.7 73 69
Multiple regression 7.7 77 68

Note. Performance of two fast and frugal heuristics (Minimalist, Take The Best) and
two linear strategies (Dawes’s rule, multiple regression} across all 20 data sets. The
average number of predictors was 7.7. Performance is measured in terms of frugality
(average number of cues looked up) and accuracy (% correct). Accuracy is measured
both for fitting data (test set = training set), and for generalization (test set # training
set). The average number of cues looked up was about the same for both kinds of
competition. For a similar result with slightly different data sets, see Gigerenzer et al.
(1999}, and for the performance of various strategies on the 20 individual data sets,
see table 8-1.
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fast and frugal Take The Best finished the tour only two percentage points
behind regression, with 75% correct. This is close to what Gigerenzer and
Goldstein (chapter 4) found, suggesting that our set had more cases similar
to the city population data than to the high-school dropout data. The fast
but not frugal Dawes’s rule scored two percentage points behind Take The
Best with 73% correct. It was quite a surprise that Dawes’s rule scored
worse than Take The Best, given that Take The Best was even more frugal
and did not integrate what little cue information it did gather. Finally, the
Minimalist pulled in last with 69% accuracy, a respectable score consid-
ering its extreme simplicity. The price of using a fast and frugal heuristic
was small, about two percentage points for Take The Best and about eight
for the Minimalist. Furthermore, more cue information did not guarantee
more accuracy, since Take The Best was slightly more accurate than
Dawes’s rule despite using fewer cues.

We Knew It All Along

One reaction to a novel claim is to say that it is impossible. Gigerenzer and
Goldstein (1996a) showed that their claim—that fast and frugal heuristics
can also be accurate—was possible; and this chapter has further shown that
it is not only sometimes possible but is, in fact, often the case. Environ-
ments in which the price of simplicity is high, such as when predicting
dropout rates in high schools, seem to be the exceptions and not the rule.

Another reaction when an “impossible” novel claim has finally been
proven is to say one “knew it all along” (see chapter 9 on hindsight where
this memory distortion is modeled by Take The Best). In this section, we
review the psychological literature to find what actually was known all
along about how well fast and frugal heuristics can perform relative to
more complex strategies.

The comparison is not entirely straightforward because earlier research
differs from ours in a number of ways. First, the range of strategies com-
pared in earlier studies was mostly restricted to different weighting
schemes for linear models. Second, the range of environments was typi-
cz.ally restricted to artificially generated data sets with multivariate normal
d%stributions for the cues and criteria. Finally, the type of competition
differed, usually involving not just fitting given data, but generalizing to
new.data, that is, training an algorithm on one part of the data and then
making predictions on another part. If both parts are of equal size, this is
usually called cross-validation. In the next section we will rerun the
wholfe competition using cross-validation. First let us consider the previ-
ous literature.

Thfj;;mc}; n?;\utselrmp'le si.trffltegies began in earnest in the mid-1970s.
such o St (lg’jllr;luth‘LC;I;sanag% mathematical analys'is, researchers
garth (1975) found tha;t a unit-wej (I)Elgmll (1974), and Emh'om and Hoi
Dawes’s rule) was on average al ® e oo mOdEI' (Wh'l ch we c

ge almost as accurate as multiple linear regres-



HOW GOOD ARE SIMPLE HEURISTICS? 107

sion—and far more robust to boot. {A “robust” strategy or model is one
that remains accurate when generalizing to new data, such as in cross-
validation.) For example, in predicting grade point averages, a unit-
weighted linear model made predictions that correlated .60 with the ac-
tual values, while a cross-validated regression model scored .57. Note that
because regression was cross-validated—making predictions on data dif-
ferent from that on which it was trained—its performance can be lower
than the unit-weighted model (which was not cross-validated). In the
three other tasks considered, unit weights had a higher accuracy than
cross-validated regression in two (Dawes & Corrigan, 1974). As Paul
Meehl put it, “in most practical situations an unweighted sum of a small
number of ‘big’ variables will, on the average, be preferable to regression
equations” (quoted in Dawes & Corrigan, 1974, p. 105).

Int a related but more recent line of research, Ehrenberg (1982) analyti-
cally compared regression weights to other weights. He showed that for
typical values of a one-cue prediction problem (e.g., with a correlation of
.7 between the criterion and the cue), using a slope differing from the
optimal by as much as plus or minus 30% results in only a 4% increase
in unexplained error. Dawes and Corrigan (1974, citing an unpublished
manuscript by Winterfeldt & Edwards, 1973) called this the phenomenon
of the flat maximum: Weights even vaguely near the optimal lead to al-
most the same output as do optimal weights.

These studies seem to say that Dawes’s rule is often almost as accurate
as multiple regression. But life is not quite that simple. First of all, in
those cases in which real environments were used, only a few such envi-
ronments were checked. Second, this research cross-validated only for re-
gression but not for Dawes’s rule, with the argument that “it is the human
judge who knows the directional relationship between the predictor vari-
ables and the criterion of interest” (Dawes, 1979, p. 573). But even experts
must have some method by which they estimate the direction of cues, and
so the cross-validated simulations in the next section test how well
Dawes’s rule performs when it must estimate the direction of the cue, too.
We will wait until a later section to operationalize Meehl’s suggestion of
using only “a small number” of variables; we will continue to use all the
cues for now. Qur work goes beyond previous research by operationaliz-
ing all aspects of Dawes’s rule—testing cross-validated Dawes’s rule
against cross-validated regression-—and seeing if the old findings still
hold up.

We also go beyond previous research in pursuing the trade-off question
more intensively: Just how much simpler can inference strategies be with-
out losing too much accuracy? Our simulations test not just Dawes’s rule
against regression but also against Take The Best and the Minimalist.
There have been some scattered experiments also trying very simple heu-
ristics (e.g., Hogarth & Makridakis, 1981; Kleinmuntz & Kleinmuntz,
1981), but only Payne, Bettman, and Johnson (1988, 1990} have launched
a consistent program of study. Their program focuses on preferences (e.g.,
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between gambles) rather than on cue-based inferences, and they measure
performance by a correlation of choices with a weighted additive model
(the expected payoff) rather than with an external criterion (since for sub-
jective choice there is none). For example, in their competitions the
simpler heuristics typically achieved from 60 to 70 percent of the perfor-
mance of the weighted additive model benchmark, but by this measure-
ment method, the simple heuristics cannot be more accurate than the “ra-
tional” answer of the weighted additive model. Only with an external
standard for the number of correct inferences is it possible to show that
simple heuristics can be more accurate than more complex strategies.
Thus, previous research has focused on preferences rather than infer-
ences, and on artificial rather than real-world environments. As a conse-
quence, it has not shed much light on the accuracy of simple heuristics
in making inferences about the real world.

In this chapter, we test heuristics on a wider range of empirical data
environments than has been used before. We run the Tour de France of
heuristic decision makers.

he Second Tour: Generalizing to New Objects

Imagine a bicycle rider who spent all his time training on the plains of
the Midwest and then tried to race in the varied landscapes of the Tour
de France. What would probably happen? He might fail completely on the
mountains. This is not to say he would have to go to France to train; as
long as he could find a mixture of Colorado mountains, midwestern
plains, and winding New England streets, he could adequately prepare for
Fhe Tour. Training on a course and racing (testing) on another is general-
ization, as opposed to fitting,

More precisely, generalization means that the strategies build their
models (i.e., calculate regression weights, determine cue orders or cue di-
rections, etc.) on some subset of all objects, the training set. The strategies
?hex} make predictions about the remaining objects, the test set. General-
ization is a more difficult and realistic test of the strategies than training
@d testing on the same objects. In our simulations, we tested generaliza-
tion b'y breaking the environment into halves, with a random assignment
of objects to one half or the other. This is called cross-validation. The
performance is then the proportion correct in the test set. Each environ-
ment was split 1000 times into training and test sets, in order to average
out any particularly helpful or harmful ways of dividing the data.

D.awes’s r.ule and the Minimalist might not seem to be doing any esti-
Eatg).n, b}lt 11'1 fact .they use the first half of the environment to estimate

e 1re?t10n in which the cues point. In our simulations they did this by
cailc.ul'fltmg v.vhether the cue validity was above or below ’the chance level.
go 01(511;3 eflulvalent to testing V\fhether the cue has a positive or negative

an-Kruskal rank correlation with the criterion, as shown in chapter
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6.} Take The Best estimates the direction of the cues and then orders them
from best to worst predictor. Multiple regression estimates the optimal
beta weights, taking into account the relationships between the variables.

We will now race through each of the environments and consider how
the strategies perform in generalization. In chapter 4, we saw one case
of generalization, predicting city populations. When the algorithms were
trained on half of the cities, as in our second tour, Take The Best was
slightly more accurate (72%) than multiple regression and Dawes’s rule
(71% each). Does this result generalize? Could it be that one-reason deci-
sion making can be more accurate across the 20 environments?

Dropping Out Again

We first tested generalization when predicting high-school dropout rates.
The simplest strategy, the Minimalist, fell from 61% to 58%; similarly,
Dawes’s rule dropped from 64% to 62%. Take The Best, which estimates
both cue direction and cue order, took a slightly larger loss and dropped
to 60% (table 5-2, “generalization”). Finally, multiple regression dropped
a whopping 18 percentage points, from 72% to 54%, which also made it
by far the least predictive strategy of the bunch. It seems the simpler strat-
egies are the more robust ones in generalization. What explains regres-
sion’s huge drop?

We believe the answer is overfitting. Imagine that a bicycle rider trains
on a course beginning with a steep ascent, continuing with a long, flat
plain, and ending with a final descent, having exactly the same proportion
of uphill, flat, and downhill regions as the test course will have. Every
day, the rider’s body gets used to pumping hard and heavy at first, then
cruising quickly, then relaxing on the way down. The danger is that the
rider may get so used to this pattern that he can no longer deal well with
other combinations of hills and plains: If the test course is a drop, then a
flat plain, ending with a steep ascent, the rider might have difficulties
adjusting. Such overfitting can happen to inference strategies, too: They
can learn the particular quirks of their training data, such as details of cue
orders and intercorrelations, too well. The more closely a strategy tries to
fit the training landscape, the greater is the danger of overfitting.

In the case of the dropout environment, there were 18 cues. Such an
abundance of cues offered ample opportunity for accidental correlations.
If regression built these accidents into its model, then its predictions on
the second half of the data, which need not have the same accidental
correlations as the first half, would be inaccurate.

Public Policy Again, consider possible policy implications. In the fitting
tour, the regression user would have confidently recommended expand-
ing ESL classes to help the dropout rate. Because regression had the best
Predictions, this would seem the best policy. However, in the generaliza-
tion tour, Take The Best was more accurate than regression, and it appears
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that regression overfitted the training data. While regression put a heavier
weight on the influence of ESL classes on dropout rates based on the train-
ing data, this may have been a fluke that will not generalize. On the other
band, Take The Best’s recommendation, based on the training data, to
encourage attendance and teach the basics may be more generalizable.
Dawes’s rule and the Minimalist do not suggest specific recommenda-
tions—just to improve on all fronts—because they weight all predictors
equally.

Later in this chapter, we will argue that regression carries a lower risk of
overfitting in larger environments with more objects (or fewer cues). There
are, though, only 57 public high schools in Chicago, and if this number of
objects does not suffice for regression, then regression simply should not be
used. There is no more data to collect for it. One might try to train regression
on dropout rates from other cities or from previous time periods in Chicago,
but then one risks again overfitting, finding factors relevant to other places
and times than to today’s Chicago public high schools.

Professors’ Income

Let us also briefly consider generalizing predictions of professors’ salaries
based on five cues. Regression’s score dropped only slightly, from 83% to
80%. Dawes’s rule and Take The Best held their ground at 75% and 80%,
respectively (table 5-3, “generalization”). The Minimalist dropped one
point to 72%. Compared with the task of predicting high school dropout
rates, predicting income was based on a smaller number of cues and on
cues with higher validity. It seemed that with these characteristics, the
Srop in accuracy also was less than was the case in predicting city popula-
ions.

We now have some idea of how generalization affects the strategies.

VYhich of the strategies will make robust generalizations across the 20 en-
vironments?

The Winner of the Second Tour

On average, regression dropped a stunning nine percentage points in ac-
curacy, from an average of 77% for the fitting task to 68% for generaliza-
tion (table 5-4, “generalization”). Meanwhile, Dawes’s rule fell four per-
centage points, from an average of 73% to 69%, as did the Minimalist,
from 69% to 65%. The small size of these drops was probably due in part
t? the fact that these two strategies estimated very little—only the direc-
tions of the cues.

The overall. winner was Take The Best at 71% accuracy, down five
percentage points. Take The Best earn
izati . N
- 12031 am?ng the four strategies, despite its fast and frugal nature. Across
cues en‘vuf'onmemS, regression and Dawes’s rule used an average of 7.7

per inference, whereas Take The Best only used 2.4 cues, the same

ed the highest accuracy in general-
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small number as for the fitting task. The fact that a heuristic can disobey
the rational maxim of collecting all available information and yet be the
most accurate is certainly food for thought.

Take The Best outperformed multiple regression by an average of three
percentage points when making generalizations. Startling at this result is,
it is not entirely inconsistent with the previous literature, which showed
that in several types of environments regression generalized less well than
the simpler Dawes’s rule (without cross-validation). Our second tour,
however, has shown that Dawes’s rule is also in danger of overfitting.
Moreover, simplicity and frugality, pushed to the extreme, can eventually
have a price: The Minimalist placed last. But this price was not very high,
for the Minimalist's average performance was a mere three percentage
points behind multiple regression.

Tinkering With the Rules of the Tour

Some colleagues were skeptical about the possibility that one-reason deci-
sion making could be fast, frugal, and accurate at the same time. They
suggested modified versions of the competition, predicting that the coun-
terintuitive accuracy of Take The Best would quickly vanish. One early
conjecture voiced against the results reported in Gigerenzer and Goldstein
{1996a; see also chapter 4), was that the recognition heuristic, with its
high empirical validity (.8) for population size, would be the main cause
for the accuracy of Take The Best. We have taken care of this conjecture
in this chapter: In both tours, all objects were recognized, so that the rec-
ognition heuristic could not operate. We will consider four further modifi-
cations and conjectures.

Use exact rather than dichotomized numbers. In the simulations re-
ported, we have dichotomized all quantitative cues at the median (except
for the binary cues, such as gender) rather than using the exact values.
This procedure was assumed to mimic the limited knowledge about cue
values that people typically have, and the potential unreliability of pre-
cise values. Each competitor, the linear strategies and the heuristics, based
their predictions on these binary or dichotomized values. A reasonable
conjecture is that part of the power of multiple regression is lost when it
is applied to dichotomized data. Some colleagues suggested rerunning the
tour and letting every strategy have the exact quantitative cue values.
There are two major ways lexicographic strategies such as Take The Best
can be extended to make inferences from quantitative values (Payne et al.,
1988, 1990). In the first version, search continues until the first cue is
found in which the two values are different; in the second, search contin-
ues until the difference between cue values exceeds a threshold or “just
noticeable difference.” To avoid the arbitrariness in defining how large
the threshold should be, we went with the first version.

We reran Take The Best and multiple regression under the conditions
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of the second tour. Take The Best, when adapted to quantitative values,
was even more frugal than its standard version. Search often stopped after
the first or second cue, because even small quantitative differences were
sufficient to halt search and prompt a decision. But how accurate were the
inferences based on quantitative predictors? Our colleagues were right:
Multiple regression did improve when given real numbers—but so did
Take The Best. Across the 20 environments, Take The Best made 76%
correct predictions, compared to regression, which also earned 76% cor-
rect. Thus, one-reason decision making in the form of Take The Best could
still match multiple regression in accuracy, even with exact quantitative
values. This counterintuitive result came as a surprise to us, but, by then,
we were getting used to surprises.

Give Dawes’s rule another chance by using only the “big” cues. Recall
Paul Meehl’s conjecture: “an unweighted sum of a small number of ‘big’
variables will, on the average, be preferable to regression equations.” In
the two tours, Dawes’s rule had access to all of the cues. Meehl, however,
suggested using only the “big” cues, that is, the most valid ones. When
Dawes’s rule estimates the direction of a cue in the training set, erroneous
estimates of the direction occur most often with low-validity cues. We
developed a version of Dawes’s rule that ignored cues with an estimated
validity of .7 or less. We reran this truncated version of Dawes'’s rule un-
der the conditions of the second tour. The accuracy indeed increases from
69% with Dawes’s Tule (see table 5-4) to 71% with the truncated Dawes’s
rule, three percentage points above the accuracy of regression. Meehl’s
intuition turned out to be correct across the 20 environments. Using only
a small number of “big” cues, without weighting them, is, on average,
more accurate in generalization than a regression that weights all cues.
But Meehl’s intuition can be pushed even further. Take The Best, which
uses only the “best” cue that discriminates between two objects, turns out
to be as accurate.

But what if Take The Best does not have the order of cues (as in Tour
1), and needs to estimate it from a very small sample? Recall first that
Take The Best does not try to estimate an optimal order of cues (as, for
instance, classification trees attempt to do; see chapters 6 and 8). Instead,
it uses a simple and frugal method to create an order (for binary cues, the
cue order can be calculated with one simple pass through the objects; see
Czerlinski, 1998 for details). Ordering cues by their cue validity, as Take
The Best does, is not called “optimal” because this procedure ignores all
dependencies between cues. We saw that, for estimating population size,
Take The Best lost on accuracy when the training set was very small, but
multiple regression lost even more (figure 4-3). These results suggest that
Take The Best is relatively robust when making predictions from a small
number of observations. But does this result generalize to other data sets?
We tested the accuracy of Take The Best when it had to estimate the cue
order from just 10 randomly chosen objects rather than from the full first
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half of the objects, as in the second tour. It then made predictions on the
other half of the environment just as in the regular second tour.

This tour tested the degree to which Take The Best depends on copious
information for assessing the order in which to try cues. The result across
20 environments was that Take The Best scored about 66% correct predic-
tions, losing five percentage points from when it had access to half the
environment for training. These numbers match the result in estimating
city populations in chapter 4. This Sample-10 tour is similar to allowing
bicycle riders only very limited training, say by announcing the layout of
the race course only days ahead of the race. It seemed that even with
very few observations, Take The Best could still make reasonably accurate
predictions.

But Take The Best cannot estimate quantities, whereas multiple regres-
sion can. This conjecture addresses the generality of Take The Best, Take
The Last, and the Minimalist. These three heuristics can make predictions
about which object has a higher value on a criterion, such as which of
two highways is more dangerous, but they cannot make quantitative pre-
dictions, such as how high the car accident rate on one of those two high-
ways is. The heuristics are specialized for particular classes of tasks,
whereas multiple regression is more general. In chapter 10, we will study
a heuristic that can make quantitative predictions, and employs one-rea-
son decision making like Take The Best. What we call the adaptive tool-
box is a collection of different heuristics designed from the same kinds
of building blocks. The building blocks, not the specific heuristics, have
generality. The specificity of the individual heuristics enables them to be
fast, frugal, and accurate—with little trade-off.

How Does Take The Best Do So Well?

What is the difference between the environments in which Take The Best
performed poorly and those in which it did well? This question concerns
the ecological rationality of Take The Best, that is, the fit between the
structure of the heuristic and that of an environment (chapter 1). This
question is the focus of the next chapter—here we will raise the question,
review previous research, and test three of its predictions empirically.

Characterizing Environments: A Review

The literature suggests variables that matter in predicting whether cross-
validated regression or Dawes’s rule without cross-validation would win
our competition. Our goal, however, was to understand the performance
of fast and frugal heuristics, so it is unclear whether these earlier findings
are relevant. Furthermore, previous research has used either simulation
studies of hundreds of randomly generated environments, or mathemati-
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cal analysis with numerous simplifying assumptions about the form of the
data. There is cause to doubt whether such findings would generalize to
our empirical environments. Let us nevertheless consider what has been
discovered, but with these caveats in mind.

Schmidt’s (1971) simulations on random data (multivariate normal dis-
tributions) showed that in cross-validation regression outperformed Dawes’s
rule on average only for large numbers of objects. For example, with four
cues, one needs a sample size of at least 50 objects for regression to beat
Dawes’s rule. For six cues, one needs at least 75 objects. For 10 cues,
100 objects are required. As a rule of thumb, it seems one should not use
regression with fewer than 10 cues per object; ctherwise, unit weights will
outperform regression weights on average. Regression is likely to overfit
the data when there are too few objects for the number of cues. That is,
regression takes account of numerous intercorrelations that may be arti-
facts of the current sample. Similarly, the fewer kinds of training course
a bicycle rider is exposed to, the more likely she is to overfit the ones she
has seen.

Einhorn and Hogarth (1975; see also Hogarth, 1981) confirmed
Schmidt’s findings and added two other factors. Dawes’s rule can be ex-
pected to perform about as well as multiple regression when (a) the coeffi-
cient of determination (R*), from the regression model is in the moderate
or low range (.5 or smaller) and (b) the cues are intercorrelated. The coeffi-
cient of determination measures the linear fit between the criterion and
the cues.

If we take these three factors together, the literature indicates that re-
gression models are slightly more accurate than Dawes’s rule if there are
many objects per cue, a high linear predictability of the criterion, and cues
are not highly correlated. Under the opposite conditions, Dawes’s rule is
slightly better.

We shall now see if number of objects per cue, ease of linear predict-
ability, or degree of cue intercorrelation can explain why Take The Best
was so successful in the real-world environments of the two tours.

Is It the Number of Objects per Cue?

Figure 5-1 shows that the advantage of Take The Best over multiple re-
gression (the difference in accuracy) depends on the ratio between the
number of objects and cues. Take The Best won by more when there were
fewer objects per cue. However, a large number of objects per cue, even
more than 10, did not guarantee that regression would tie or outperform
Take The Best. For instance, the largest ratio in figure 5-1 was obtained
for predicting body fat, with 218 men measured on 14 cues, resulting in
about 16 objects per cue. Even with this high ratio of objects per cue, Take

'I:he Best made a higher proportion of accurate inferences than multiple
linear regression.
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Figure 5-1: Take The Best’s advantage over multiple regression (in per-
cent correct) plotted against the number of objects per cue for 19 of the 20
environments (Tour 2). The missing environment is fish fertility, which is
well off the scale with 395 objects and 3 cues. Take The Best scored 1.8
Percentage points behind regression on the fish fertility data.

The finding that the number of objects per cue was a good predictor of
Take The Best’s advantage provides support to the hypothesis that regres-
sion was overfitting when there were few objects per cue. There is a more
direct test of this hypothesis: Compare cross-validated regression with re-
Bression that merely fits the data, as the number of objects per cue is var-
ied (figure 5-2). The result shows a trend similar to that in figure 5-1: The
smaller the number of objects per cue, the larger the difference between
the performance of regression in the fitting and generalization tasks. In
both figures, the plots have nonconstant variance and appear curved.

Is It the Ease of Linear Predictability?

The second characteristic of environments is the coefficient of determina-
tion (R%). The idea is that in environments with a high coefficient of deter-
Mination, multiple regression results in better predictions than Dawes’s
rule, while the exact weighting scheme does not matter much for data that
s not very linear anyway. We measured R’ by running regression on the
full environment. However, there appeared to be no relation between R
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Figure 5-2: The accuracy of multiple regression in the fitting task (Tour

1) minus its accuracy in the generalization task (Tour 2) plotted agau}St

the number of objects per cue for 19 of the 20 environments. The fish

fertility environment is again omitted. In data fitting, regression scored
0.4 percentage points higher than in cross-validation on this data set.

and the difference in accuracy between Take The Best and multiple re-
gression.

Is it the Cue Intercorrelation?

If all cues were perfectly correlated (r=1.0), then one-reason decision
making would be as accurate as a linear combination of all cues. There-
fore, several of our colleagues have suggested that the higher the intercor-
relation between cues, the greater the advantage Take The Best has over
regression. (Some others proposed the opposite relationship.) To test this
hypothesis, we measured the correlations between each pair of cues in
each environment, took the absolute values, and then averaged them. will
environments with high average absolute correlations give Take The Best
more of an advantage over regression? We found no trend, so this variable
does not seem to explain Take The Best’s success. Nor did one of the
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following variables: the maximum cue intercorrelation, the minimum cue
intercorrelation, and the variance of the correlations.

What structures of real-world environments does Take The Best exploit
in order to perform so well? From the three characteristics reported in
studies that compared Dawes’s rule with regression, only one, the ratio
between the number of objects and the number of cues, was related to the
advantage Take The Best had over regression. Thus, the hypotheses de-
rived from previous work comparing Dawes’s rule with regression only
partially shed light on the question of which environment structures can
be exploited by fast and frugal heuristics. The following chapter offers
more insight into this question, based on mathematical intuition and
proof.

What We Have Learned

To control for the natural reaction to all new results, the “I knew it all
along” reflex, we had asked several prominent researchers in judgment
and decision making to predict how close Take The Best would come to
multiple regression in accuracy. These researchers were expert on non-
compensatory strategies and multiple regression. Their predictions were
consistent: They bet on between 5 and 10 percentage points more accu-
racy for multiple regression. Our results surprised them as much as us.
In this chapter, we have considered those surprises:

1. The original results obtained by Gigerenzer and Goldstein (1996a)
and summarized in chapter 4 generalized to 20 environments and to situa-
tions where the recognition heuristic played no role. This undermines
the conjecture that there is something peculiar or wrong with the original
domain of population sizes of German cities.

2. When one replaces the fitting task used by Gigerenzer and Goldstein
with a generalization task, the fast and frugal Take The Best was even
more accurate across 20 real-world environments than multiple regres-
sion. Take The Best achieved this accuracy despite using less than one
third of all cues. Also, the myopic Minimalist came close to multiple re-
gression in accuracy. Extending earlier findings, Dawes’s rule slightly out-
performed regression even when both were cross-validated.

3. Several variants of the competition did not change these results
much. For instance, even with quantitative rather than binary predictors,
Take The Best still matched and slightly outperformed the accuracy of
multiple regression.

An important issue that we could not resolve in this chapter is the
how question. How can one-reason decision making be as accurate, and
sometimes even more accurate, than linear strategies—despite the latter’s
use of all cues and, in some cases, complex matrix computations? The
result in figure 5-1 indicates that the relation between the number of cues
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and objects plays a role in the answer. But this does not explain the cause
nor provide a proof. The next chapter will give several analytical answers
and proofs. What structures of information in environments can Take The
Best exploit, that is, what structures make a heuristic ecologically ra-
tional?

We began this chapter with a Darwinian message from Egon Brunswik:
To understand the mind one needs to analyze the texture of its environ-
ment, past and present. Brunswik, however, also tentatively suggested
that multiple regression could provide a model for how the mind infers
its environment, and many neo-Brunswikians since have relied exclu-
sively on these linear models. Our results indicate instead that mental
strategies need not be like multiple regression to make accurate inferences
about their environments. In the situations we studied in this chapter,
simple heuristics can achieve the same goal. One-reason decision making
can win a whole Tour.
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