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Abstract. In the classical secretary problem, one attempts to find the maximum of an
unknown and unlearnable distribution through sequential search. In many real-world
searches, however, distributions are not entirely unknown and can be learned through
experience. To investigate learning in such settings, we conduct a large-scale behavioral
experiment in which people search repeatedly from fixed distributions in a “repeated
secretary problem.” In contrast to prior investigations that find no evidence for learning in
the classical scenario, in the repeated setting we observe substantial learning resulting in
near-optimal stopping behavior. We conduct a Bayesian comparison of multiple behav-
ioral models, which shows that participants’ behavior is best described by a class of
threshold-based models that contains the theoretically optimal strategy. Fitting such a
threshold-based model to data reveals players’ estimated thresholds to be close to the
optimal thresholds after only a small number of games.
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1. Introduction
How do people learn when to stop searching through
candidates, balancing the risks of making a choice
before or after the best one has been seen? In this
article, we investigate this question with an empirical
analysis of the secretary problem, a formal game in
which an agent evaluates candidates one at a time in
search of the best one, making an accept or reject
decision after each evaluation. Only one candidate
can be accepted, and after being rejected, a candidate
can never be recalled. It is called the secretary prob-
lem because it resembles a hiring process in which
secretaries are interviewed serially and, if rejected by
one employer, are quickly hired by another.

Since its appearance in the mid-20th century, the
secretary problem has enjoyed exceptional popularity
(Freeman 1983). It is the prototypical optimal stop-
ping problem, attracting so much interest from so
many fields that one review article concluded that it
“constitutes a ‘field’ of study” (Ferguson 1989, p. 282).
In this century, analyses, extensions, and tests of the
secretary problem have appeared in decision science,
operations research, computer science, economics, sta-
tistics, and psychology as well as in the pages of this
journal (Bearden et al. 2006, Palley and Kremer 2014,
Alpern and Baston 2017).

The intense academic interest in the secretary prob-
lem may have to do with its similarity to real-life
search problems, such as choosing a mate (Todd 1997),

choosing an apartment (Zwick et al. 2003), or hiring,
for example, a secretary. It may have to do with the
way that the problem exemplifies the concerns of core
branches of economics and operations research that
deal with search costs. Lastly, the secretary problem
may have endured because of curiosity about its fasci-
nating solution. In the classic version of the problem,
the optimal strategy is to ascertain the maximum of the
first proportion 1/e of the candidates and then stop
after the next candidate that exceeds it. Interestingly,
this 1/e stopping rule wins about 1/e of the time in the
limit (Gilbert and Mosteller 1966). This curious so-
lution to the secretary problem only holds when the
decision maker has no information about the distri-
bution from which the values in the candidates are
drawn (e.g., Mahdian et al. 2008): that is, when only
the rankings of values are revealed rather than the
values themselves. The optimal solution when the
decision maker has full information about the distri-
bution is qualitatively different.However, is it realistic to
assume that people cannot learn about the distribu-
tions in which they are searching?
In many real-world searches, people can learn about

the distribution of the quality of candidates as they
search. The first time that a manager hires someone, she
may have only a vague guess as to the quality of the
candidates who will come through the door. By the 50th
hire, however, she will have hundreds of interviews
behind her and know the distribution rather well. This
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should cause her accuracy in a real-life secretary problem
to increase with experience.

Although people seemingly should be able im-
prove at the secretary problem with experience, prior
academic research surprisingly does not find evidence
that they do. For example, Campbell and Lee (2006,
p. 1068) attempted to get participants to learn in the
full information condition by offering enriched feed-
back and even financial rewards in a repeated secretary
problem, but they concluded that “there is no evidence
people learn to perform better in any condition.”
Similarly, Lee (2006) and Guan and Lee (2017) found
no evidence of learning in the full information version
of the problem, and Seale and Rapoport (1997) found
no evidence of learning in the no information (ranks-
only) version.

In contrast, by way of a randomized experiment
with thousands of players, we find that performance
improves dramatically over a few trials and soon
approaches optimal levels. We will show that players
steadily increase their probability of winning the
game with more experience, eventually coming close
to the optimal win rate. Then, we show that the im-
proved win rates are due to players learning to
make better decisions on a candidate-by-candidate
basis and not just due to aggregating over candidates.
Furthermore, we will show that the learning that we
observe occurs in an environment in which the feed-
back can be unhelpful, pointing players in the wrong
direction with respect to the optimal strategy.

After showing various types of learning in our data,
we turn our attention to modeling the players’ be-
havior. Using a Bayesian comparison framework, we
show that players’ behavior is best described by a
family of threshold-based models, which include the
optimal strategy. Moreover, the estimated thresholds
are surprisingly close to the optimal thresholds after
only a small number of games.

2. Related Work
Although the total number of articles on the secretary
problem is large (Freeman 1983), our concern with
empirical, as opposed to purely theoretical, investi-
gations reduces these to a much smaller set. We
discuss here those most similar to our investigation.
Ferguson (1989, p. 282) usefully defines a “standard”
version of the secretary problem as follows:

1. There is one secretarial position available.
2. The number n of applicants is known.
3. The applicants are interviewed sequentially in

random order, with each order being equally likely.
4. It is assumed that you can rank all of the ap-

plicants from best to worst without ties. The decision
to accept or reject an applicant must be based only on
the relative ranks of those applicants interviewed so
far.

5. An applicant who is rejected cannot later be
recalled.

6. You are very particular andwill be satisfiedwith
nothing but the very best.
The one point on which we deviated from the

standard problem is the fourth. To follow this fourth
assumption strictly, instead of presenting peoplewith
raw quality values, some authors (e.g., Seale and
Rapoport 1997) present only the ranks of the candi-
dates, updating the ranks each time that a new candidate
is inspected. This prevents people from learning about
the distribution. However, because the purpose of this
work is to test for improvement when distributions are
learnable, we presented participants with actual values
instead of ranks.
Other properties of the classical secretary problem

could have been changed. For example, there exist
alternate versions in which there is a payout for choosing
candidates other than the best. These “cardinal” and
“rank-dependent” payoff variants (Bearden 2006)
violate the sixth property above. We performed a
literature search and found fewer than 100 papers on
these variants, whereas we found over 2,000 papers
on the standard variant. Our design preserves the
sixth property for two reasons. First, by preserving
it, our results will be directly comparable with the
greatest number of existing theoretical and empirical
analyses. Second, changing more than one variable
at a time is undesirable, because it makes it difficult
to identify which variable change is responsible for
changes in outcomes.
Although prior investigations, listed below, have

looked at people’s performance on the secretary
problem, none have exactly isolated the condition of
making the distributions learnable. Across several
articles, Lee et al. (2004), Campbell and Lee (2006),
and Lee (2006) conducted experiments in which
participants were shown values one at a time and told
to try to stop at the maximum. Across these papers,
the number of candidates ranged from 5 to 50, and
participants played from 40 to 120 times each. In all of
these studies, participants knew that the values were
drawn from a uniform distribution between 0 and
100. For instance, Lee (2006, p. 5) states, “It was
emphasized that . . . the values were uniformly and
randomly distributed between 0.00 and 100.00.”With
such an instruction, players can immediately and
exactly infer the percentiles of the values presented to
them, which helps them calculate the probability that
unexplored values may exceed what they have seen.
Because participants were told about the distribution,
these experiments do not involve learning the dis-
tribution from experience, which is our concern. In-
formation about the distribution was also conveyed
to participants in a study by Rapoport and Tversky
(1970), inwhich seven individual participants viewed
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an impressive 15,600 draws from probability distribu-
tions over several weeks before playing secretary
problem games with values drawn from the same dis-
tributions. In a study where participants played sec-
retary problem games on five values drawn from either
a left-skewed or a right-skewed distribution, Guan and
Lee (2017) provided information about the distri-
bution by requiring participants to first play eight
“practice problems” before beginning the main part
of the experiment. These investigations are similar to
our study in that they both involve repeated play and
that they present players with actual values instead of
ranks. That is, they depart from the fourth feature of
the standard secretary problem listed above. These
studies, however, differ from our study in that they
give participants information about the distribution
from which the values are drawn before they begin to
play. In contrast, in our version of the game, partic-
ipants are given no information about the distribu-
tion, see no samples from it before playing, and do not
know what the minimum or maximum values could
be. This key difference between the settings may have
had a great impact. For instance, in the studies by Lee
et al. (2004), Campbell and Lee (2006), and Lee (2006),
the authors did not find evidence of learning or
players becoming better with experience. In contrast,
we find profound learning and improvement with
repeated play.

Corbin et al. (1975) ran an experiment in which
people played repeated secretary problems, with a
key difference that these authors manipulated the
values presented to subjects with each trial. For instance,
the authors varied the support of the distribution from
which values were drawn and manipulated the ratio
and ranking of early values relative to later ones. The
manipulations were done in an attempt to prevent
participants from learning about the distribution and
thus make each trial like the “standard” secretary
problem with an unknown distribution. Similarly,
Palley and Kremer (2014) provide participants with
ranks for all but the selected option to hinder learning
about the distribution. In contrast, because our objective
is to investigate learning, we draw random numbers
without any manipulation.

Finally, in a study by Kahan et al. (1967), groups of
22 participantswere shownup to 200 numbers chosen
from a left-skewed, right-skewed, or uniform distri-
bution. In this study as well as our study, participants
were presented with actual values instead of ranks.
Also like our study, distributions of varying skew
were used as stimuli. However, in Kahan et al. (1967),
participants played the game just one time and thus,
were not able to learn about the distribution to im-
prove at the game.

Other empirical studies have investigated the pro-
cess by which people update their choices of strategy

based on feedback in settings other than the secretary
problem. Rieskamp and Otto (2006) propose a rein-
forcement learning-based framework in which par-
ticipants choose from a strategy repertoire based on
the strategies’ historical payoffs. Worthy and Maddox
(2014) compare a reinforcement learning-based
framework with a “win-stay, lose-shift” model as well
as a hybridmodel. In this study, we focus onmodeling
the within-game strategies chosen by participants
rather than the process by which those strategies
evolve in response to feedback; however, modeling
the feedback-response process is an important di-
rection for future work.
In summation, for various reasons, prior empirical

investigations of the secretary problem have not been
designed to study learning about the distribution
of values. These studies informed participants about
the parameters of the distribution before the experi-
ment, allowed participants to sample from the dis-
tribution before the experiment, replaced values from
the distribution with ranks, manipulated values to
prevent learning, or ran single-shot games in which
the effects of learning could not be applied to future
games. Our investigation concerns a repeated secre-
tary problem in which players can observe values
drawn from distributions that are held constant for
each player from game to game. We focus on un-
derstanding players’ behavior within games, leaving
the question ofmodeling the evolution in individuals’
strategies for future work.

3. Experimental Setup
To collect behavioral data on the repeated secretary
problem with learnable distributions of values, we
created an online experiment. The experiment was
promoted on a prominent blog, a newsletter of a
behavioral economics consultancy, and the website
of one of the authors. This type of data collection
has the advantages of being inexpensive, leading to
very large samples, and recruiting a more diverse
population than the standard population of uni-
versity undergraduates in an experimental eco-
nomics laboratory (Rubinstein 2013). The experiment
did not involve monetary incentives. Like Rubinstein
(2013), whowrote about similar experiments that “the
behavioral results are, in my judgment, not qualita-
tively different from those obtained by more con-
ventional methods,” we feel that the pros (collecting
more data on a fixed budget and eliminating the
transaction costs of having each participant register
and provide payment credentials) outweigh the cons
(the lack of a financial incentive to try). If incentives
improve performance on this task, the results from
this unincentivized setting might be taken as a lower
bound for how well a similar population should be
able to learn to play the repeated secretary problem.
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The experiment attracted 6,537 players who played
the game at least one time. A total of 48,336 games
were played on the site. As users arrived at the game’s
landing page, they were cookied, and their browser
URL was automatically modified to include an iden-
tifier. These two steps were taken to assign all plays
on the same browser to the same arbitrary user
identifier string and condition and to track person-to-
person sharing of the game URL. Any user deter-
mined to arrive at the site via a shared URL (i.e., a
noncookied user entering via a modified URL) was
excluded from analysis and is not counted in the 6,537
that we analyze. We note that including these users
makes little difference to our results and that we only
exclude them to obtain a set of players who were
randomly assigned to conditions by the website. As a
precaution against cheating, we decided to exclude
any playerwhose success ratewas so high as to have a
less than 1 in 10,000 chance of occurring under op-
timal play. One player won 46 of 54 games and was
excluded with this criterion, although given over
6,000 players, it is not impossible that this player was
both skillful and lucky. Users saw the following in-
structions. Blanks stand in the place of the number of
boxes, which was randomly assigned and will be
described later:

You have been captured by an evil dictator. He forces
you to play a game. There are—boxes. Each box has a
different amount of money in it. You can open any
number of boxes in any order.After opening each box, you
can decide to open another box or you can stop by clicking
the stop sign. If you hit stop right after opening the box
with themost money in it (of the—boxes), then you win.
However, if you hit stop at any other time, you lose,
and the evil dictator will kill you. Try playing a few
times and see if you improve with practice.

The secretary problem was lightly disguised as the
“evil dictator game” to somewhat lessen the chances
that a respondent would search for the problem
online and discover the classical solution. The boxes
correspond to the candidates, and the amount of
money in each box represents the candidate’s value.

Immediately beneath the instructions was an icon
of a traffic stop sign and the message “When you are
done opening boxes, click here to find out if youwin.”
Underneath this on the page were hyperlinks stating,
“Click here to open the first box,” “Click here to open
the second box,” and so on. As each link was clicked,
the corresponding box value was presented to the
user. If the value in the box was the highest seen thus
far, it was marked as such on the screen. See Figure A.1
in the appendix for a screenshot. Every click and box
value was recorded, providing a record of every box
value seen by every player as well as every stopping
point. If a participant tried to stop at a box that was

dominated by (i.e., less than) an already opened box, a
pop-up explained that doing so would necessarily
result in the player losing. After clicking on the stop
icon or reaching the last box in the sequence, partici-
pants were redirected to a page that told themwhether
theywon or lost and showed them the contents of all of
the boxes, where they stopped, where the maximum
valuewas, and by howmany dollars (if any) they were
short of the maximum value. To increase the number of
observations submitted per person, players were told,
“Please play at least six times so we can calculate
your stats.”

3.1. Experimental Conditions
To allow for robust conclusions that are not tied to the
particularities of one variant of the game, we ran-
domly varied two parameters of the game: the dis-
tributions and the number of boxes. Each player was
tied via a browser cookie to these randomly assigned
conditions so that their immediate repeat plays, if
any, would be in the same conditions.

3.1.1. Random Assignment to Distributions. The box
values were randomly drawn from one of three proba-
bility distributions as pictured in Figure 1. The maxi-
mum box value was $100 million, although this
was not known by the participants. The “low”
condition was strongly negatively skewed. Random
draws from it tend to be less than $10 million, and the

Figure 1. (Color online) Cumulative Distribution Functions
of the Three Distributions from Which Box Values Were
Randomly Drawn in the Experiment

Note. For probability density functions, the lowdistribution is strongly
positively skewed (solid line), the medium distribution is a uniform
distribution (dotted line), and the high distribution is strongly
negatively skewed (dashed line).
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maximum value tends to be notably different from
the next highest value. For instance, among 15 boxes
drawn from this distribution, the highest box value is,
on average, about $14.5 million higher than the second
highest value. In the “medium” condition, numbers
were randomly drawn from a uniform distribution
ranging from $0 to $100 million. The maximum box
values in 15 box games are, on average, $6.2 million
higher than the next highest values. Finally, in the
“high” condition, boxes values were strongly nega-
tively skewed and bunched up near $100 million. In
this condition, most of the box values tend to look
quite similar (typically eight-digit numbers greater
than $98 million). Among 15 boxes, the average dif-
ference between the maximum value and the next
highest is rather small at only about $80,000. Note
that players only need to attend to the percentiles of
the distribution to make optimal stopping decisions;
the details of the distribution beyond the percen-
tiles are irrelevant to optimal play. However, different
distributions could potentially lead to differences
in actual human play. Hence, varying the distribu-
tion presented to participants leads to more gener-
alizable results than an analysis of a single arbitrary
setting.

3.1.2. Random Assignment to Number of Boxes. The
second level of random assignment concerned the
number of boxes, which was either 7 or 15. Although
one would think that this approximate doubling in
the number of boxes would make the game quite a bit
harder, it only affects theoretically optimal win rates
by about two percentage points, whichwill be shown.
As with the distributions, varying the number of
boxes leads to more generalizable results.

With either 7 or 15 boxes and three possible dis-
tributions, the experiment had a 2 × 3 design. In the 7-
box condition, 1,145, 1,082, and 1,103 participants
were randomly assigned to the low, medium, and
high distributions, respectively, and in the 15-box
condition, the counts were 1,065, 1,127, and 1,015,
respectively. The number of subjects assigned to the
different conditions was not significantly different
whether comparing the two box conditions (7 or 15),
the three distributions of box values (low, medium, or
high), or all six cells of the experiment by chi-squared
tests (all p-values were > 0.05).

3.2. Optimal Play
Before we begin to analyze the behavioral data
gathered from these experiments, we first discuss
how one would play this game optimally. Recall that
the player sequentially opens boxes with values that
are drawn independently from a common distribu-
tion F. The players win only if they select the highest
value out of all of the boxes: opened or unopened. The

problem is nontrivial, because they are forced tomake
a stopping decision for each boxwithout knowing the
contents of the as-yet unopened boxes.
Optimal players will adopt a threshold rule: accept

the current value if it is greater than a critical value
(Gilbert andMosteller 1966). It is a dominant strategy
to reject any value worse than the best value pre-
viously observed.1 With a known distribution in-
dependently distributed across boxes, the critical
dollar value will be the maximum of the historically
best value and a critical value that does not depend on
the history. Gilbert and Mosteller (1966) derived the
critical values for the uniform distribution over [0, 1].
Because the percentiles of an arbitrary distribution
are uniformly distributed on [0, 1] by definition, this
same analysis gives the critical percentile values for
all distributions listed in Table 1.2

The relevant entries for our study are the games of 7
and 15 boxes. These calculations show that experi-
enced players who know the distribution can hope
to win at best 62.2% of the games for 7-box games
and just under 60% of the time for 15-box games.
Note that these numbers compare favorably with the
usual secretary results, which are less for all game
lengths, converging to the famous 1/e, about 37%, as
the number of boxes increases. Thus, there is sub-
stantial value in knowing the distribution.
This favorable comparison holds for the specific

game lengths that we consider as well as in the limit.
As is reasonably well known, the value of the classical
secretary solution can be found by choosing a value k
to sample and then setting the best value observed in
the first k boxes as a critical value. Optimizing over k
yields the probabilities of winning for given game
lengths given in Table 2. Comparing the probability of
winning shown in Tables 1 and 2 shows that making
the distribution learnable allows for a much higher
rate of winning.

Table 1. Critical Values and Probability of Winning Given a
Known Distribution of Values for Up to 15 Boxes

Boxes left Critical percentiles Pr(win)

1 0 1
2 0.5 0.750
3 0.6899 0.684
4 0.7758 0.655
5 0.8246 0.639
6 0.8559 0.629
7 0.8778 0.622
8 0.8939 0.616
9 0.9063 0.612
10 0.9160 0.609
11 0.9240 0.606
12 0.9305 0.604
13 0.9361 0.602
14 0.9408 0.600
15 0.9448 0.599
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How well can players do learning the distribution?
To model this, we consider an idealized agent that
plays the secretary problem repeatedly and learns
from experience. The agent begins with the critical
percentile values from Table 1 and learns the per-
centiles of the distribution from experience; it will be
referred to as the learn percentiles (LP) agent. The
agent has a perfect memory, makes no mistakes, has
derived the critical values in Table 1 correctly, and can
re-estimate the percentiles of a distribution with each
new value that it observes. It is difficult to imagine a
human player being able to learn at a faster rate than
the LP agent. We thus include it as an unusually
strong benchmark.

3.3. Learning Percentiles: The LP Agent
The LP agent starts off knowing the critical values for
a 7- or 15-box game in percentile terms (i.e., the critical
values given by the first 7 or 15 rows of Table 1). The
agent does not yet know the critical value as raw
box(dollar) values, because the distribution is un-
known before the first play. Armed with these critical
values, the LP agent converts the box values that it
observes into percentiles to compare them with the
critical values. The first box value that the LP agent
sees gets assigned an estimated percentile of 0.50. If
the second observed box value is greater than the first,
it estimates the second value’s percentile to be 0.75
and reestimates the first value’s percentile to be 0.25.
If the second value is smaller than the first, it assigns
the estimate of 0.25 to the second value and 0.75 to the
first value. It continues in this way, re-estimating
percentiles for every subsequent box value encoun-
tered according to the percentile rank formula:

N< + 0.5N�
N

, (1)

where N< is the number of values seen so far that are
less than the given value, N� is the number of times
that the given value has occurred so far, and N is the
number of boxes opened so far.
After recomputing all of the percentiles, the agent

compares the percentile of the box just opened with
the relevant critical value and decides to stop if the
percentile exceeds the critical value or decides to
continue searching if it falls beneath it, making sure
never to stop on a dominated box unless it is in the last
position and therefore has no choice. Recall that a
dominated box is one that is less than the histori-
cal maximum in the current game. The encountered
values are retained from game to game, meaning that
the agent’s estimates of the percentiles of the distri-
bution will approach perfection and that win rates
will approach the optima in Table 1.
How well does the LP agent perform? Figure 2

shows its performance. Comparing its win rate on
the first play with the 7- and 15-box entries in Table 2,
we see that the LP agent matches the performance of
the optimal player of the classic secretary problem in
its first game. Performance increases steeply over the
first three games and achieves the theoretical maxima
(horizontal lines in Figure 2) in seven or fewer games.
In any given game, a player can either stop when it
sees themaximumvalue, inwhich case it wins, or stop
before or after the maximum value, in which case it
loses. In addition to the win rates, Figure 2 also shows
how often agents commit these two types of errors.
Combined error is necessarily the complement of the
win rate, and therefore, the steep gain in one implies a
steep drop in the other. Both agents are more likely to
stop before themaximumas opposed to after it, which
we will see is also the case with human players.
The LP agent serves as strong benchmark against

which human performance can be compared. It is
useful to study its performance in simulation, because
the existing literature provides optimal win rates for
many variations of the secretary problem but is silent
on how well an idealized3 agent would do when
learning from scratch. In addition to win rates, these
agents show the patterns of error that even idealized
players would make on the path to optimality. In the
next section, we will see how these idealized win and
error rates compare with those of the human players
in the experiment.

4. Behavioral Results: Learning Effects
Because 48,336 games were played by 6,537 users, the
average user played 7.39 games. Roughly one-half
(49.6%) of users played five games or more, and one-
quarter (23.2%) played nine games or more. One-
tenth (9.3%) played 16 games or more.
Prior research (e.g., Lee 2006) has found no evi-

dence of learning in repeated secretary problemswith

Table 2. The Probability of Winning a Game in the Classical
Secretary Problem (UnknownDistribution of Values) for Up
to 15 Boxes

Game length (boxes) Classical secretary problem Pr(win)

1 1
2 0.50
3 0.50
4 0.458
5 0.433
6 0.428
7 0.414
8 0.410
9 0.406
10 0.399
11 0.398
12 0.396
13 0.392
14 0.392
15 0.389
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known distributions. What happens with unknown
but learnable distribution? As shown in Figure 3,
players rapidly improve in their first games and come
within 5–10 percentage points of theoretically maxi-
mal levels of performance. The leftmost point on each
solid curve in Figure 3 indicates how often first games
are won. The next point to the right represents second
games and so on. The solid horizontal lines in Figure 3
at 0.622 and 0.599 show the maximal win rate at-
tainable by an agent with perfect knowledge of the
distribution. Note that these lines are not a fair com-
parison for early plays of the game in which knowl-
edge of the distribution is imperfect or completely
absent; in pursuit of a fair benchmark, we computed
the win rates of the idealized LP agent shown in the
dashed gray lines in Figure 3.

Performance in the first games, in which players have
verylittleknowledgeofthedistribution,isquiteabit lower
than would be expected by optimal play in the classic
secretary problem with 7 (optimal win rate 0.41) or 15
boxes (optimal win rate 0.39). Thus, some of the learning
has to do with starting from a low base. However, the
classic version’s optima are reached by about the second
game, and improvement continues another 10–15 per-
centage points beyond the classic optima.

One could argue that the apparent learning that we
observe is not learning at all but a selection effect. By

this logic, a common cause (e.g., higher intelligence) is
responsible for players both persisting longer at the
game and winning more often. To check this, we
created Figure A.2 in the appendix, which is a similar
plot except that it restricts to players who played at
least seven games. Becausewe see very similar results
with and without this restriction, we conclude that
Figure 3 reflects mostly learning effects.
Recall that our experiment had a 2 × 3 design with

either 7 or 15 boxes and one of three possible underly-
ing distributions of the box values. Figure 3 shows the
average probability of our subjects winning in the 7-
and 15-box treatments aggregated over the three
different distributions of box values. Figure 4 shows
the probability of people winning in each of the six
treatments of our experiment. Observe first that the
probability of winning, indicated by the circles in
Figure 4, increases toward the maximal win rate in
each of the six treatments. In all six treatments,most of
the learning happens in the early games, with dimin-
ishing returns to playing more games. This qualita-
tive similarity shows the robustness of the finding
that there is rapid and substantial learning in just a
few repeated plays of the secretary problem. By
comparing the probability of winning across all six
treatments, one can see that the low and medium dis-
tributions were about equally as difficult and that the

Figure 2. (Color online) Rates of Winning, Stopping Too Soon, and Stopping Too Late for the LP Agent

Note. The theoretically maximal win rates for 7 and 15 boxes are given by the solid black lines.
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high distribution was the hardest, because it had the
lowest probability of winning. To understand this, we
next examine the types of errors that the participants
made. The probability of stopping after the maximum
box value, indicated by the triangles in Figure 4, is
fairly similar across all six treatments. There is, how-
ever, variation in the probability of stopping before
the maximum, indicated by the squares in Figure 4,
across the six treatments. Participants were more
likely to stop before the maximum box in the high
condition than in the others, which explains why
subjects performed worse in this treatment than in
the others. Because the overall qualitative trends are
fairly similar across the three different distributions
of box values, we will aggregate over them in the
analyses that follow.

Having established that players’ behavior changes
with experience, we turn our attention to character-
izing those changes. One overarching trend is that,
soon after their first game, people search less. As
seen in Figure 5, in the first eight games, the average
depth of search decreases by about one-quarter to
one-third of one box. Players can lose by stopping too
early or too late. These search depth results suggest
that stopping too late is the primary concern that

participants address early in their sequence of games.
This is also reflected in the rate of decrease in the
“stopping aftermax” errors in Figures 3 and 4. In both
Figures 3 and 4, rates of stopping after the maximum
decrease most rapidly.

4.1. Optimality of Box-by-Box Decisions
Do players’ decisions become more optimal with ex-
perience? Recall that, when the distribution is known,
one can make an optimal decision about when to stop
searching by comparing the percentile of an observed
box value with the relevant critical value in Table 1. If
the observed value exceeds the critical value, it is
optimal to stop; otherwise, it is optimal to continue
searching. In Figure 6, the horizontal axis shows the
difference between observed box values (as percen-
tiles) and the critical values given in Table 1. The
vertical axis shows the probability of stopping the
search when values above or below the critical values
are encountered. The data in Figure 6(a) are from
human players and reflect all box-by-box decisions.
An optimal player who knows the exact percentile

of any box value as well as the critical values, would
always keep searching (stop with probability zero)
when encountering a value with a percentile that is

Figure 3. (Color online) Rates of Winning the Game and Committing Errors for Players with Varying Levels of Experience

Notes. Error bars indicate ±1 standard error; when they are not visible, they are smaller than the points. The area of each point is proportional to
the number of players in the average. The graph is cut at 20 games, because less than 1% of games played were beyond a user’s 20th game. Solid
lines indicate stopping on the maximum, long dashes indicate stopping before the maximum, and short dashes indicate stopping after the
maximum. The dashed and dotted gray lines are the rate of winning the game for the LP agent. The solid black horizontal lines indicate the
maximal win rate for an agent with perfect knowledge of the distribution.
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below the critical value. Similarly, such an optimal
player would always stop searching (stop with proba-
bility one) when encountering a value with a percentile
that exceeds the critical value. Together, these two be-
haviors would lead to a step function: stopping with
probability zero to the left of the critical value and
stopping with probability one above it.

Figure 6(a) shows that, on first games (denoted by
circles), players tend to both undersearch (stopping
about 25% of the time when below the critical value)
and oversearch (stopping at a maximum of 75% of the
time instead of 100% of the time when above the
critical value). In a player’s second through fourth
games (triangles in Figure 6(a)), performance is much
improved, and the probability of stopping the search
is close to the ideal 0.5 at the critical value. The squares
in Figure 6(a), showing performance in later games,
approaches ideal step function. To address possible

selection effects in this analysis, Figure A.3 in the
appendix is similar to Figure 6, except that it restricts
to the games of those who played a substantial
number of games. Because there are fewer observa-
tions, the error bars are larger, but the overall trends
are the same, suggesting again that these results are
primarily because of learning.
Attaining ideal step function performance is not re-

alistic when learning about the distribution from expe-
rience.Comparisonwith theLPagent provides a baseline
ofhowwellone couldeverhope todo.Figure 6(b) shows
that, in early games, even the LP agent both stops and
continues when it should not. Failing to obey the
optimal critical values may be a necessary consequence
of learning about a distribution from experience. Com-
pared with the human players, however, the LP agent
approaches optimality more rapidly. Furthermore, in
the first game, it is less likely to make large-magnitude

Figure 4. (Color online) Rates of Winning the Game and Committing Errors for Players with Varying Levels of Experience

Notes. Error bars indicate ±1 standard error; when they are not visible, they are smaller than the points. The solid black horizontal lines indicate
the maximal win rate for an agent with perfect knowledge of the distribution.
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errors. Although the human players never reach the
ideal stopping rates of zero and one in thefirst game, the
LP agent does so when the observed values are suffi-
ciently far from the critical vales.

Figure 6(a) shows that stopping decisions stay
surprisingly close to optimal thresholds in aggregate.
Recall that the optimal thresholds depend on how
many boxes are left to be opened (see Table 1). Be-
cause early boxes are encountered more often than
late ones, this analysis could be dominated by decisions
on the early boxes. To address this, in what follows,
we estimate the threshold of each box individually.

4.2. Effects of Unhelpful Feedback
Onemay viewwinning or losing the game as a type of
feedback for the player to indicate if the strategy used
needs adjusting. Taking this view, consider a player’s
first game. Say that this player oversearched in the
first game: that is, they saw a value greater than the
critical value but did not stop on it. Assume further
that this player won this game. This player did not
play the optimal strategy but won anyway, and
therefore, their feedback was unhelpful. The middle
panel of Figure 7(a) shows the errors made during a
second game after oversearching and either win-
ning or losing during their first game. The circles in
the middle panel of Figure 7(a) tend to be above the
triangles, meaning that players who stopped too late
but did not get punished (triangles) are less likely to
stop on most box values in the next game compared
with players who stopped too late and got punished
(circles).

Figure 5. (Color online) Search Depth for Players in
Their First Games Measured by the Number of Boxes
Opened

Note. Error bars indicate ±1 standard error.

Figure 6. (Color online) (a) Empirical Rates of Stopping the Search for Box Values Above and Below the Critical Values; (b) a
Version of Panel (a) with Data from Simulated Agents Instead of Human Players

Note. Only nondominated boxes are included in this analysis.
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Similarly, the bottom panel in Figure 7(a) shows the
triangles to be above the circles meaning that players
who stopped too early but did not get punished
(triangles) are more likely to stop on most box values
in the next game comparedwith players who stopped
too early and got punished (circles).

This finding makes the results in Figures 3 and 6
even more striking, because it is a reminder that the
participants are learning in an environment where
the feedback is oftenmisleading. Figure 7(b) shows the
errors in the fifth game given the feedback from the
first game.4 Even a quick glance shows that the curves
are essentially on top of each other. Thus, those who
received unhelpful feedback in the first game were
able to recover—and perform just as well as those
who received helpful feedback—by the fifth game.

5. Modeling Player Decisions
In this section, we explore the predictive performance
of several models of human behavior in the repeated
secretary problem with learnable distributions. We
begin by describing our framework for evaluating
predictive models, then describe the models, and fi-
nally, compare their performance.

5.1. Evaluation and Comparison
Our goal in this section is to compare several models
in terms of how well they capture human behavior in

the repeated secretary problem to give us some in-
sight into to howpeople are learning to play the game.
Because our goal is to compare how likely eachmodel
is given the data the humans generated, we use a
Bayesian model comparison framework. The models
that we compare, defined in Section 5.2, are probabi-
listic, allowing them to express differing degrees of con-
fidence in any given prediction. This also allows them to
capture heterogeneity between players. In contextswhere
players’ actions are relatively homogeneous, their
actions can be predicted with a high degree of con-
fidence, whereas in contexts where players’ actions
differ, themodel can assign probability to each action.
After opening each box, a player makes a binary

decision about whether to stop. Our data set consists
of a set of stopping decisions ygt ∈ {0, 1} that the player
made in game g after seeing nondominated box t. If
the player stopped at box t in game g, then ygt � 1;
otherwise, ygt � 0. Our data set also contains the history
xgT:t � xgT, x

g
T−1, . . . , x

g
t

( )
of box values that the player

had seen until each stopping decision. We represent
the full data set by the notation $.
In our setting, a probabilistic model f maps from a

history xgT:t to a probability that the agent will stop.
(This fully characterizes the agent’s binary stopping
decision.) Each model may take a vector θ of pa-
rameters as input. We assume that every decision is
independent of the others given the context. Hence,

Figure 7. (Color online) Errors in the Second (a) and Fifth (b) Games Conditional onWhether the First GameWasWon or Lost

Notes. Vertically arranged panels indicate what type of error, if any, was made on the first game. The fifth game was the first game where the
differences between the distributions of behavior between players who initially won and those who initially lost were not significant at any
standard level for any of the three types of error.
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given a model and a vector of parameters, the like-
lihood of our data set is the product of the proba-
bilities of its decisions: that is,

p $|h, θ( ) � ∏
(xgT:t,ygt )∈$

f xgT:t|θ
( )

ygt
[ + 1 − f xgT:t|θ

( )( )
1 − xgT:t
( )]

.

In Bayesian model comparison, models are com-
pared by how probable they are given the data. That
is, a model f 1 is said to have better predictive per-
formance than model f 2 if p f 1|$( )

> p f 2|$( )
, where

p f |$( ) � p( f )p $| f( )
p($) . (2)

With no a priori reason to prefer any specific model,
we can assign them equal prior model probabilities
p( f ). Comparing the model probabilities defined in
Equation (2) is thus equivalent to comparing the
models’ model evidence, which is defined as

p $| f( ) �
∫
Θ

p $| f , θ( )
p(θ)dθ. (3)

The ratio of model evidences p $| f 1( )/
p $| f 2( )

is called
the Bayes factor (e.g., see Jeffreys 1935, 1961; Kass and
Raftery 1995; Kruschke 2015). The larger the Bayes
factor, the stronger the evidence in favor of f 1 ver-
sus f 2.

This probabilistic approach has several advantages.
First, the Bayes factor between two models has a
direct interpretation: it is the ratio of probabilities of
one model being the true generating model condi-
tional on one of themodels under consideration being
the true model. Second, it allows models to quantify
the confidence of their predictions. This quantifica-
tion allows us to distinguish between models that are
almost correct and those that are far from correct in a
way that is impossible for coarser-grained compari-
sons, such as predictive accuracy.

One additional advantage of the Bayes factor is that
it compensates for overfitting. Models with a higher-
dimensional parameter space are penalized because
of the fact that the integral in Equation (3) must av-
erage over a larger space. Themore flexible themodel,
the more of this space will have low likelihood, and
hence, the better thefitmust be in the high-probability
regions to attain the same evidence as a lower-
parameter model.

The amount bywhich high-dimensionalmodels are
penalized by the Bayes factor depends strongly on the
choice of prior. The standard Bayesian view is that a
model consists of both a prior and a likelihood; in this
view, the dependence of the overfitting penalty on the
prior is unproblematic, because the prior is part of
the model. An alternative view is that likelihood is
the model, whereas the choice of prior is relatively

arbitrary. In this view, the choice of prior constitutes
a “researcher degree of freedom,” the influence of
which should beminimized. Oneway tominimize the
impact of the choice of prior is to evaluate models
using cross-validation, in which the data are split into a
training set that is used to set the parameters of the
model and a test set that is used to evaluate themodel’s
performance.
We use a hybrid of the cross-validation and Bayesian

approaches. We first randomly select a split s � ($train,
$test), with $train∪$test �$ and $train∩$train �Ø. We
then compute the cross-validated model evidence of the
test set $test with respect to the prior updated by
the training set p θ|$train( ) rather than computing the
model evidence of the full data set $ with respect to
the prior p(θ). To reduce variance owing to the ran-
domness introduced by the random split, we take
expectation over the split, yielding

Esp $test| f ,$train( ) �
∫ ∫

Θ
p $test| f , θ( )

p θ|$train( )
dθ

[ ]

· p(s)ds, (4)

where p(s) is a uniform distribution over all splits. The
ratio of cross-validated model evidences

Esp $test| f 1,$train( )
Esp $test| f 2,$train

( ) (5)

is called the cross-validated Bayes factor. As with the
Bayes factor, larger values of (5) indicate stronger
evidence in favor of f 1 versus f 2.
The integral in Equation (4) is analytically intrac-

table, and therefore, we followed the standard prac-
tice of approximating it using Markov chain Monte
Carlo sampling. Specifically, we used the PyMC soft-
ware package’s implementation (Salvatier et al. 2016)
of the Slice sampler (Neal 2003) to generate 25,000
samples from each posterior distribution of inter-
est, discarding the first 5,000 as a “burn in” period.
We then used the “bronze estimator” of Alqallaf and
Gustafson (2001) to estimate Equation (4) based on
this posterior sample.

5.2. Models
We start by defining our candidate models, each of
which assumes that an agent decides at each non-
dominated box whether to stop or continue based on
the history of play until that point. For notational
convenience, we represent a history of play by a tuple
containing the number of boxes seen i, the number of
nondominated boxes seen i*, and the percentile of the
current box qi as estimated using Equation (1). For-
mally, each model is a function f : N ×N × [0, 1] →
[0, 1] that maps from a tuple (i, i*, qi) to a probability of
stopping at the current box.
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Definition 1 (Value Oblivious). In the value oblivious
model, agents do not attend to the specific box values.
Instead, conditional on reaching a nondominated box i,
an agent stops with a fixed probability pi:

f value−oblivious i, i*, qi | pj
{ }T−1

j�1
( )

� pi.

Definition 2 (Viable k). The viable k model stops on the
kth nondominated box:

f viablek i, i*, qi | k, ε( ) � ε if i* < k,
1 − ε otherwise.

{

In this model and the next, agents are assumed to err
with probability ε on any given decision.

Definition 3 (Sample k). The sample k model stops on
the first nondominated box that it encounters after
having seen at least k boxes, regardless of whether
those boxes were dominated or not:

f sample i, i*, qi | k, ε( ) � ε if i< k,
1 − ε otherwise.

{

When k � �T/e� and ε � 0, this corresponds to the
optimal solution of the classical secretary problem in
which the distribution is unknown.

Definition 4 (Multiple Threshold). The multiple-threshold
model stops at box i with increasing probability as
the box value increases. We use a logistic specifica-
tion, which yields a sigmoid function at each box i
such that, at values equal to the threshold τi, an agent
stops with probability 0.5; an agent stops with greater
(less) than 0.5 probability on values higher (lower)
than τi, with the probabilities becoming more certain
as the value’s distance from τi grows. An additional
parameter, λ, controls the sensitivity of the estimated
probabilities to the distance from τi. Unlike the
thresholds τi, we estimate a single value of λ that is
shared across all boxes. Intuitively, λ controls the
slope of the sigmoid5:

f thresholds i, i*, qi |λ, τj
{ }T−1

j�1
( )

� 1
1 + exp[λ(qi − τi)] .

When the thresholds are set to the critical values of
Table 1 such that τi � z(T−i+1) and λ is set sufficiently
high, this model corresponds to the optimal solution
of the secretary problem with a known distribution.6

Definition 5 (Single Threshold). The single-thresholdmodel
is a simplified threshold model in which agents com-
pare all box values with a single threshold τ rather than
box-specific thresholds:

f single−threshold i, i*, qi |λ, τ( ) � 1
1 + exp[λ(qi − τ)] .

Definition 6 (Two Threshold). The two-threshold model
is another simplified threshold model in which agents
compare all “early” box values (the first �T/2� boxes)
with one threshold (τ0) and all “late” box values with
another (τ1):

f two−threshold i, i*, qi |λ, τ0, τ1( ) � 1
1 + exp[λ(qi − τν)] ,

where

τν � τ0 if i< T
2 ,

τ1 otherwise.

{

This is a low-parameter specification that neverthe-
less allows for differing behavior as a game prog-
resses (unlike single threshold).

5.2.1. Priors. Each of the models described above has
free parameters that must be estimated from the data.
We used the following uninformative prior distri-
butions for each parameter:

pi ∼ Uniform[0, 1] τ, τi, τ0, τ1 ∼ Uniform[0, 1],
k ∼ Uniform{1, 2, . . . ,T − 1} λ ∼ Exponential(1000).
ε ∼ Uniform[0, 0.5].

The hyperparameter for precision parameters λ was
chosen manually to ensure good mixing of the sam-
pler. The prior for parameter k is a discrete uniform
distribution; the other uniform distributions are con-
tinuous uniform distributions over intervals. Each
parameter’s prior is independent (e.g., in the single-
threshold model, a given pair (λ, τ) has prior prob-
ability p(λ, τ) � p(λ)p(τ)).

5.2.2. RelatedWork. Previouswork has also evaluated
threshold-based models of human behavior in opti-
mal stopping problems. Guan et al. (2014) study a
threshold model in which each participant has a
personal latent threshold for each box constrained to
decrease as more boxes are opened. Guan et al. (2015)
compare this model with a hierarchical model in
which the deviation of participants’ thresholds from
the optimum is directlymodeled. Lee (2006) estimates
a family of threshold-based models, which include
models with single thresholds, two thresholds, and
separate thresholds for each box. Importantly, all of
these models estimate thresholds separately for each
participant, but the thresholds are shared across all
repetitions of the task; in contrast, we estimate the
multiple-thresholds model separately for each repe-
tition but share thresholds across participants.

5.3. Model Comparison Results
Figure 8 gives the cross-validated Bayes factors for
each of the models of Section 5.2. The models were
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estimated separately for each number of games, that
is, each model was estimated once on all of the first
games played by participants, again on all of the
second games, etc. This allows us to detect learning
by comparing the estimated values of the parame-
ters across games. The cross-validated Bayes factor
is defined as a ratio between two cross-validatedmodel
evidences. Because we are instead comparing multiple
models, we take the standard approach of expressing
each factor with respect to the lowest-evidence model
for a given number of games. These normalized cross-
validated Bayes factors are consistent in the sense that,
if the normalized cross-validated Bayes factor for
model h1 is k times larger than the normalized cross-
validated Bayes factor for h2, then the cross-validated
Bayes factor between h1 and h2 is k. As a concrete
example, the two-threshold model had the lowest
cross-validated model evidence for participants’
first games in the seven-box condition; the cross-
validated model evidence for the value oblivious
model was 1021 times greater than that of the sample k
model and 1040 times greater than that of the viable
k model.

In first game played in both the 7- and 15-box
conditions and in second game in the 15-box condi-
tion, the best-performing model was value oblivious.
In all subsequent games and in both conditions, viable
kwas theworst-performingmodel,7 and themultiple-
threshold model was the best-performing model. The
two-threshold model was the next best-performing
model.8

In FigureA.4 in the appendix,we present the results
of Figure 8 using the standard Bayes factor, in which
the performance of the model on the entire data set is

marginalized over the prior distribution rather than
marginalizing the performance of the model on a test
data set over the posterior distributionwith respect to
a disjoint training data set. The primary difference
between the evaluation by standard Bayes factors
and the results of this section is the performance of
the two-thresholdmodel. In the seven-box condition,
the two-threshold model has a very similar Bayes
factor to the multiple-threshold model (after game 2)
rather than having decisively lower performance.
In the 15-box condition, the two-threshold model has
a higher Bayes factor than the multiple-threshold
model in contrast to the cross-validated Bayes factors,
which arevery similar. Thesedifferences are consequences
of theuninformativepriors thatwe impose on threshold
values in these models, which cause the Bayes factor
to favor lower-dimensional models (such as two
threshold) more strongly than the cross-validated
Bayes factor.
Evidently, players behaved consistently with the

optimal class of model for the known distribution—
multiple thresholds—as early as the second game.
This is consistent with the observations of Section 4.1,
in which players’ outcomes improved with repeated
play. In addition, it is consistent with the learning
of optimal thresholds in Figure 6(a) but improves on
that analysis, because here, the most common stop-
ping points—the early boxes—do not dominate the
average.
Furthermore,players’ estimated thresholdsapproached

the theoretically optimal values remarkably quickly.
Figure 9 shows the estimated thresholds for the seven-
box condition along with their 95% posterior credible
intervals. The estimated thresholds for the second

Figure 8. (Color online) Cross-Validated Bayes Factors for Each Model Compared with the Lowest-Evidence Model in Each
Game
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and subsequent games are strictly decreasing in the
number of boxes seen, like the optimal thresholds.
Overall, the thresholds seem to more closely ap-
proximate their optimal values over time. After only
four games, each threshold’s credible interval con-
tains the optimal threshold value.9 Thus, workers
learned to play according to the optimal family of
models and learned the optimal threshold settings
within that family of models.

The success of the value oblivious model in the first
game (Figure 8) suggests that neither of the threshold-
based models fully capture players’ decision making
in their initial game. This is further supported by the
best estimates of thresholds for the first game: unlike
subsequent games, which have thresholds that strictly
decrease in number of boxes seen, in the first game, the
estimated thresholds are strictly increasing in number
of boxes seen. This is consistent with players using a
value oblivious model. If players who stop on later
boxes do so for reasons independent of the box’s value,
then they will tend to stop on higher values merely
because of the selection effect from only stopping on
nondominated boxes.

In sum, the switch from increasing to decreasing
thresholds in Figure 9 is consistent with moving from
a value oblivious strategy, which generalizes the op-
timal solution for the classical problem, to a threshold
strategy, which generalizes the optimal strategy for
known distributions.
One possible explanation for the apparent change

in strategy is that players spent the first few games
primarily collecting information about the distribu-
tion and then switched to trying to actually win the
game only in later games: that is, they spent the first
few games exploring and then switched to exploiting
only later (Fang and Levinthal 2009). In that situation,
one would expect to see players opening more boxes
in early games than in later games, because that is the
way to learn the most about the distribution. We do
indeed see that players’ search depth decreases with
experience (Figure 5). However, the most common
behavior in the first game (for both the 7- and 15-box
conditions) was for players to stop before encoun-
tering themaximum (see the dashed lines in Figure 3).
This suggests that players are attempting to win—
even in the first game—rather than purely exploring.

Figure 9. (Color online) Estimated Thresholds in the Seven Box Games

Note. Error bars represent the 95% posterior credible interval.
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6. Conclusion: Behavioral Insights
Themain research questions that we addressed in this
work were whether people improve at the secretary
problem—a paradigmatic optimal search problem—
through repeated play and whether they approach
optimality with experience. The investigation is both
qualitative, inferring which decision rules players use,
and quantitative, estimating decision thresholds and
computing rates of success. As Lee (2006) observed, in
addition to its intrinsic interest, the secretary problem
is a valuable setting for studying human problem solv-
ing. Its simple rules enable it to be studied empirically,
whereas its complex solution allows for the comparison
of human success rates with optimal success rates and,
importantly, human decision procedures with optimal
decision procedures.

In contrast to prior research (Seale and Rapoport
1997, Campbell and Lee 2006, Lee 2006), across
thousands of players and 10s of thousands of games,
we document fast and steep learning effects. Rates of
winning increase by about 25 percentage points over
the course of the first 10 games (Figure 3).

From the results in this article, it seems as if players
not only improve but also learn to play in a way that
approaches optimality in several respects, which we
list here. Rates of winning come within about five to
ten percentage points of the maximum win rates pos-
sible, and this average is takenwithout cleaning the data
of players who were obviously not trying; removing
such players would bring the win rates even closer
to the maximum. In looking at candidate-by-candidate
decision making, players’ probabilities of stopping
came to approximate an optimal stop function after
a handful of games (Figure 6). Additionally, similar
deviations from the optimal pattern were also ob-
served in a very idealized agent that learns from data,
suggesting that some initial deviation from opti-
mality is inevitable. Perhaps even more remarkably,
people were able to do this with no prior knowledge
of the distribution and, consequently, sometimes un-
helpful feedback (Figure 7).

In the first game, player behavior was relatively
well fit by the value oblivious model, which had a
fixed probability of stopping at each candidate(box)
independent of the values of the candidates. In later
plays, threshold-based decisionmaking—the optimal
strategy for known distributions—fit the data best
(Figure 8). Additional analyses revealed that players’
implicit thresholds were close to the optimal critical
values (Figure 9), which is surprising given the small
likelihood that players actually would, or could, calcu-
late these values.

In domains that are well described as optimal
stopping problems, these results mean that the op-
timal procedure is likely to give a close approximation
of human behavior. This is in contrast to many areas
of economics, where human behavior is known to
qualitatively and consistently deviate from optimal
(e.g., Tversky and Kahneman 1992, Goeree and Holt
2001, Camerer 2003).
A few points of difference could explain the ap-

parent departure fromprior empirical results. First, to
our knowledge, our study is the first study to begin
with an unknown distribution that players can learn
over the course of the experiment. Previous studies
have provided rank information only (e.g., Seale and
Rapoport 1997), given a full description of the dis-
tribution (leaving no scope for learning) (e.g., Lee
2006), or presented samples from the distribution to
the participants before the main experiment (e.g.,
Rapoport and Tversky 1970, Guan and Lee 2017).
Seemingly small differences in instructions to par-
ticipants could have a large effect. As mentioned,
other studies have informed participants about the
distribution: for example, its minimum, maximum,
and shape. Second, some prior experimental designs
have presented ranks or manipulated values that
made it difficult to impossible for participants to learn
the distributions. Third, past studies have used rel-
atively few participants, making it difficult to detect
learning effects. For example, Campbell and Lee (2006)
have 12–14 participants per condition and assess
learning by binning the first 40, second 40, and third
40 games played. In contrast, with over 6,000 par-
ticipants,we can examine success rates at every number
of games played beneath 20 with large sample sizes.
This turns out to be important for testing learning
because most of it happens in the first 10 games. Al-
though our setting is different than prior ones, the
change of focus seems merited because many real-
world search problems (such as hiring employees
in a city) involve repeated searches from learnable
distributions.
A promising direction for future research would be

to propose and test a unifiedmodel of search behavior
that can capture several properties observed here,
such as the effects of unhelpful feedback (Figure 7),
the transition fromvalue oblivious to threshold-based
decision making (Figure 8), and the learning of near-
optimal thresholds (Figure 9). Having established
that people learn to approximate optimal stopping in
repeated searches through distributions of candi-
dates, the next challenge is to model how individual
strategies evolve with experience.
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Appendix. Additional Figures and Tables

Table A.1. Table of p-Values of Comparisons of
Distributions of Winning and Losing Players Broken Out by
the Three Possible Error Types in the First Game (No Error,
Undersearch, and Oversearch)

Game 2 3 4 5 6

No error 0.02 0.56 0.78 0.27 0.96
Undersearch < 10−10 0.05 0.08 0.19 0.48
Oversearch < 10−10 0.01 0.01 0.34 0.17

Notes. The p-values were computed on a 2 × 2 contingency table for
each game and initial error type. The columns are number of
nondominated boxes stopped on and number of nondominated
boxes passed on. There is one row for subjects who won the first
game and one row for subjects who lost the first game.

Figure A.1. (Color online) Screenshot of the 15-Box Treatment with 3 Boxes Opened
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Figure A.2. (Color online) Rates ofWinning the Game andCommitting Errors for Human PlayersWhere Each Player Played at
Least Seven Games

Notes. Error bars indicate ±1 standard error; when they are not visible, they are smaller than the points. The area of each point is proportional to
the number of players in the average. Solid lines indicate stopping on the maximum, long dashes indicate stopping before the maximum, and
short dashes indicate stopping after the maximum.

Figure A.3. (Color online) In Figure 6(a), Different Players
Contribute to Different Curves

Notes. For example, a player who only played 1 time would only
contribute to the circle-denoted curve, whereas someone who played
10 times would contribute to all three curves. To address these
selection effects, in this plot, we restrict to the first seven games of
those who played at least seven games.
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Endnotes
1The final box, which must be accepted if opened, is an exception. In
our game, a pop-up warning prevented players from choosing
dominated boxes.
2Despite the term “percentile,” we use decimal notation instead of
percentages for convenience.
3Although it is idealized, the LP agent is nevertheless not an optimal
Bayesian learner. It seems very reasonable to want an equal posterior
probability of the next value occurring in each interval between the
data observed so far; the estimate of Equation (1) has this property.
However, there is no countably additive prior that will produce a
sequence of estimates having this property when conditioned on
successive observations (Hill 1968). We are not aware of any trac-
table, analytic, optimal Bayesian procedures for sequential quantile
estimation.
4The fifth game was the first game where the differences between the
distributions of behavior of players who initially won and those who
initially lost were not significant at any standard level for any of the
three possible error types in the first game (no error, undersearch, and
oversearch). See Table A.1 in the appendix for p-values.
5We consideredmodels with one λ per box, but they did not perform
appreciably better than the single-λ models.
6More precisely, it approximates the optimal model arbitrarily
closely as λ → ∞.
7Recall that, although sample k was inspired by the optimal strategy
for the classical secretary problem, neither sample k nor viable k are
optimal strategies for the repeated secretary problem.
8We tested whether a different boundary between the two thresholds
would perform better by estimating a model in which the choice of
boundary was a separate parameter. This model actually performed
worse that the two-threshold model. This indicates that the data do
not argue strongly for a different boundary, and hence, the only effect
of adding a boundary parameter was overfitting.
9 In games 5–8, either one or two credible intervals no longer contain
the corresponding optimal value; by game 9, all thresholds’ credible
intervals again contain their optimal values. We caution that this is
not necessarily equivalent to the true values differing significantly
from optimal in games 5–8; see Wagenmakers et al.(2019) for a de-
tailed discussion of this issue.
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